

SUBJECT INDEX TO VOLUME 3

Additives

Zeolite-based additives for high alumina cement products (Fu Y, Ding J, Beaudoin JJ), 1996;3:37–42

Aging

Mechanisms and processes leading to changes in time in the properties of CFRC (Katz A, Bentur A), 1996;3:1–13

Beam

Observation of the fracture path development in mortar beam specimens (Davies J), 1996;3:31–36

Bending

Mechanisms and processes leading to changes in time in the properties of CFRC (Katz A, Bentur A), 1996;3:1–13

Observation of the fracture path development in mortar beam specimens (Davies J), 1996;3:31–36

BET method

Deterioration of the nitrogen BET surface area of dried cement paste with storage time (Rarick RL, Thomas JJ, Christensen BJ), 1996;3:72–75

Effect of carbonation on the nitrogen BET surface area of hardened portland cement paste (Thomas JJ, Hsieh J, Jennings HM), 1996;3:76–80

Brittleness number

Design of concrete mixes for minimum brittleness (Lange-Kornbak D, Karihaloo BL), 1996;3:124–132

Calciochondrodite

²⁹Si and ¹⁷O NMR investigation of the structure of some crystalline calcium silicate hydrates (Cong X, Kirkpatrick RI), 1996;3:133–143

Calcium silicate hydrate

²⁹Si and ¹⁷O NMR investigation of the structure of some crystalline calcium silicate hydrates (Cong X, Kirkpatrick R)), 1996;3:133–143

²⁹Si MAS NMR study of the structure of calcium silicate hydrate (Cong X, Kirkpatrick RJ), 1996;3:144–156

Carbonation

Effect of carbonation on the nitrogen BET surface area of hardened portland cement paste (Thomas JJ, Hsieh J, Jennings HM), 1996;3:76–80

Carbon fiber reinforced cement

Mechanisms and processes leading to changes in time in the properties of CFRC (Katz A, Bentur A), 1996;3:1–13

Cement based matrices

Behavior of cement based matrices reinforced by randomly dispersed microfibers (Lange DA, Ouyang C, Shah SP), 1996;3:20–30

Cement paste

Deterioration of the nitrogen BET surface area of dried cement paste with storage time (Rarick RL, Thomas JJ, Christensen BJ), 1996;3:72–75

Effect of carbonation on the nitrogen BET surface area of hardened portland cement paste (Thomas JJ, Hsieh J, Jennings HM), 1996;3:76–80

Mechanical properties of cement pastes and mortars at early ages (Boumiz A, Vernet C, Cohen Tenoudji F), 1996; 3:94–106

Observations of microcracking in cement paste upon drying and rewetting by environmental scanning electron microscopy (Kjellsen KO, Jennings HM), 1996;3:14–19

Characteristic length

Design of concrete mixes for minimum brittleness (Lange-Kornbak D, Karihaloo BL), 1996;3:124–132

Composite materials

Behavior of cement based matrices reinforced by randomly dispersed microfibers (Lange DA, Ouyang C, Shah SP), 1996;3:20–30

Mechanisms and processes leading to changes in time in the properties of CFRC (Katz A, Bentur A), 1996;3:1–13

Compressional waves

Mechanical properties of cement pastes and mortars at early ages (Boumiz A, Vernet C, Cohen Tenoudji F), 1996; 3:94–106

Compressive strength

Hydration and strength of high performance concrete (Persson B), 1996;3:107–123

Zeolite-based additives for high alumina cement products (Fu Y, Ding J, Beaudoin JJ), 1996;3:37–42

Concrete

Design of concrete mixes for minimum brittleness (Lange-Kornbak D, Karihaloo BL), 1996;3:124–132

Hydration and strength of high performance concrete (Persson B), 1996;3:107–123

Testing of concrete under closed-loop control (Gettu R, Mobasher B, Carmona S, Jansen DC), 1996;3:54–71

Confocal microscopy

Behavior of cement based matrices reinforced by randomly dispersed microfibers (Lange DA, Ouyang C, Shah SP), 1996;3:20–30

Control systems

Testing of concrete under closed-loop control (Gettu R, Mobasher B, Carmona S, Jansen DC), 1996;3:54–71

Cracking characteristics

Observation of the fracture path development in mortar beam specimens (Davies J), 1996;3:31–36

Observations of microcracking in cement paste upon drying and rewetting by environmental scanning electron microscopy (Kjellsen KO, Jennings HM), 1996;3:14–19

Curing temperature

Zeolite-based additives for high alumina cement products (Fu Y, Ding J, Beaudoin JJ), 1996;3:37–42

Cylinder strength

Hydration and strength of high performance concrete (Persson B), 1996;3:107–123

Drying

Observations of microcracking in cement paste upon drying and rewetting by environmental scanning electron microscopy (Kjellsen KO, Jennings HM), 1996;3:14–19

Elastic moduli

Mechanical properties of cement pastes and mortars at early ages (Boumiz A, Vernet C, Cohen Tenoudji F), 1996; 3:94–106

Electron microscopy

Observations of microcracking in cement paste upon drying and rewetting by environmental scanning electron microscopy (Kjellsen KO, Jennings HM), 1996;3:14–19

Failure

Testing of concrete under closed-loop control (Gettu R, Mobasher B, Carmona S, Jansen DC), 1996;3:54–71

Fiber bending breakage

Mechanisms and processes leading to changes in time in the properties of CFRC (Katz A, Bentur A), 1996;3:1–13

Fiber mixing breakage

Mechanisms and processes leading to changes in time in the properties of CFRC (Katz A, Bentur A), 1996;3:1–13

Fibers

Behavior of cement based matrices reinforced by randomly dispersed microfibers (Lange DA, Ouyang C, Shah SP), 1996;3:20–30

Mechanisms and processes leading to changes in time in the properties of CFRC (Katz A, Bentur A), 1996;3:1–13

Fracture mechanics

Design of concrete mixes for minimum brittleness (Lange-Kornbak D, Karihaloo BL), 1996;3:124–132

Fracture path

Observation of the fracture path development in mortar beam specimens (Davies J), 1996;3:31–36

Geothermal cement

Sodium metasilicate-modified lightweight high alumina cements for use as geothermal well-cementing materials (Sugama T, Carciello N), 1996;3:45–53

High alumina cement

Sodium metasilicate-modified lightweight high alumina cements for use as geothermal well-cementing materials (Sugama T, Carciello N), 1996;3:45–53

Zeolite-based additives for high alumina cement products (Fu Y, Ding J, Beaudoin JJ), 1996;3:37–42

High performance concrete

Hydration and strength of high performance concrete (Persson B), 1996;3:107–123

Hillebrandite

²⁹Si and ¹⁷O NMR investigation of the structure of some crystalline calcium silicate hydrates (Cong X, Kirkpatrick RJ), 1996;3:133–143

Hydration

Hydration and strength of high performance concrete (Persson B), 1996;3:107–123

Hydration, cement

The evolution of the microstructure in styrene acrylate polymer-modified cement pastes at the early stage of cement hydration (Su Z, Sujata K, Bijen MJM, Jennings HM, Fraaij ALA), 1996;3:87–93

Mechanical properties of cement pastes and mortars at early ages (Boumiz A, Vernet C, Cohen Tenoudji F), 1996; 3:94–106

Internal relative humidity

Hydration and strength of high performance concrete (Persson B), 1996;3:107–123

Tennite

²⁹Si and ¹⁷O NMR investigation of the structure of some crystalline calcium silicate hydrates (Cong X, Kirkpatrick RI), 1996;3:133–143

²⁹Si MAS NMR study of the structure of calcium silicate hydrate (Cong X, Kirkpatrick RJ), 1996;3:144–156

Lightweight slurry

Sodium metasilicate-modified lightweight high alumina cements for use as geothermal well-cementing materials (Sugama T, Carciello N), 1996;3:45–53

Microcracking

Observations of microcracking in cement paste upon drying and rewetting by environmental scanning electron microscopy (Kjellsen KO, Jennings HM), 1996;3:14–19

Micromechanics

Design of concrete mixes for minimum brittleness (Lange-Kornbak D, Karihaloo BL), 1996;3:124–132

Microsphere

Sodium metasilicate-modified lightweight high alumina cements for use as geothermal well-cementing materials (Sugama T, Carciello N), 1996;3:45–53

Microstructure

Design of concrete mixes for minimum brittleness (Lange-Kornbak D, Karihaloo BL), 1996;3:124–132

The evolution of the microstructure in styrene acrylate polymer-modified cement pastes at the early stage of cement hydration (Su Z, Sujata K, Bijen MJM, Jennings HM, Fraaij ALA), 1996;3:87–93

Mortar

Mechanical properties of cement pastes and mortars at early ages (Boumiz A, Vernet C, Cohen Tenoudji F), 1996; 3:94–106

Observation of the fracture path development in mortar beam specimens (Davies J), 1996;3:31–36

Nuclear magnetic resonance spectroscopy

²⁹Si and ¹⁷O NMR investigation of the structure of some crystalline calcium silicate hydrates (Cong X, Kirkpatrick RJ), 1996;3:133–143

²⁹Si MAS NMR study of the structure of calcium silicate hydrate (Cong X, Kirkpatrick RJ), 1996;3:144–156

Polymer dispersion

The evolution of the microstructure in styrene acrylate polymer-modified cement pastes at the early stage of cement hydration (Su Z, Sujata K, Bijen MJM, Jennings HM, Fraaij ALA), 1996;3:87–93

Portland cement

Deterioration of the nitrogen BET surface area of dried cement paste with storage time (Rarick RL, Thomas JJ, Christensen BJ), 1996;3:72–75

Effect of carbonation on the nitrogen BET surface area of hardened portland cement paste (Thomas JJ, Hsieh J, Jennings HM), 1996;3:76–80

The evolution of the microstructure in styrene acrylate polymer-modified cement pastes at the early stage of cement hydration (Su Z, Sujata K, Bijen MJM, Jennings HM, Fraaij ALA), 1996;3:87–93

Reinforcement

Behavior of cement based matrices reinforced by randomly dispersed microfibers (Lange DA, Ouyang C, Shah SP), 1996;3:20–30

Mechanisms and processes leading to changes in time in the properties of CFRC (Katz A, Bentur A), 1996;3:1–13

Rewetting

Observations of microcracking in cement paste upon drying and rewetting by environmental scanning electron microscopy (Kjellsen KO, Jennings HM), 1996;3:14–19

Self-desiccation

Hydration and strength of high performance concrete (Persson B), 1996;3:107–123

Observations of microcracking in cement paste upon drying and rewetting by environmental scanning electron microscopy (Kjellsen KO, Jennings HM), 1996;3:14–19

Servocontrol

Testing of concrete under closed-loop control (Gettu R, Mobasher B, Carmona S, Jansen DC), 1996;3:54–71

Setting time

Mechanical properties of cement pastes and mortars at early ages (Boumiz A, Vernet C, Cohen Tenoudji F), 1996; 3:94–106

Shear waves

Mechanical properties of cement pastes and mortars at early ages (Boumiz A, Vernet C, Cohen Tenoudji F), 1996; 3:94–106

Silica fume

Behavior of cement based matrices reinforced by randomly dispersed microfibers (Lange DA, Ouyang C, Shah SP), 1996;3:20–30

Sodium metasilicate

Sodium metasilicate-modified lightweight high alumina cements for use as geothermal well-cementing materials (Sugama T, Carciello N), 1996;3:45–53

Strain softening

Testing of concrete under closed-loop control (Gettu R, Mobasher B, Carmona S, Jansen DC), 1996;3:54–71

Strength

Hydration and strength of high performance concrete (Persson B), 1996;3:107–123

Surface area

Deterioration of the nitrogen BET surface area of dried cement paste with storage time (Rarick RL, Thomas JJ, Christensen BJ), 1996;3:72–75

Effect of carbonation on the nitrogen BET surface area of hardened portland cement paste (Thomas JJ, Hsieh J, Jennings HM), 1996;3:76–80

Technology transfer

On the interest of research in building materials (Capmas A), 1996;3:157–158

Questions to Arnon Bentur, Head, National Building Research Institute, Technion, Israel Institute of Technology, Haifa (Skalny JP), 1996;3:81–85

Tensile strength

Hydration and strength of high performance concrete (Persson B), 1996;3:107–123

Testing

Testing of concrete under closed-loop control (Gettu R, Mobasher B, Carmona S, Jansen DC), 1996;3:54–71

Tobermorite

²⁹Si and ¹⁷O NMR investigation of the structure of some crystalline calcium silicate hydrates (Cong X, Kirkpatrick RJ), 1996;3:133–143

²⁹Si MAS NMR study of the structure of calcium silicate hydrate (Cong X, Kirkpatrick RJ), 1996;3:144–156

Ultrasonics

Mechanical properties of cement pastes and mortars at early ages (Boumiz A, Vernet C, Cohen Tenoudji F), 1996; 3:94–106

Xonotlite

²⁹Si and ¹⁷O NMR investigation of the structure of some crystalline calcium silicate hydrates (Cong X, Kirkpatrick R]), 1996;3:133–143

X-ray diffraction

²⁹Ši MAS NMR study of the structure of calcium silicate hydrate (Cong X, Kirkpatrick RJ), 1996;3:144–156

Zeolite

Zeolite-based additives for high alumina cement products (Fu Y, Ding J, Beaudoin JJ), 1996;3:37–42