

PII S0008-8846(97)00092-6

DIFFUSION STUDIES IN FORMATION AND SINTERING OF CaAl₂O₄ and BaAl₂O₄: A COMPARATIVE EVALUATION

M.M. Ali, S.K. Agarwal and S.K. Handoo

National Council For Cement and Building Materials
P-21 South Extension II, Ring Road
New Delhi 110049 (India)

(Communicated by M. Daimon)
(Received January 31, 1997; in final form May 6, 1997)

ABSTRACT

Formation of CaAl₂O₄ in 1:1 molar mix of CaO and Al₂O₃ occurs at higher temperature through formation of mainly lime rich phases such as C₃A and C₁₂A₇. In BaO-Al₂O₃ mix, however stoitiometric formation of BaAl₂O₄ occurs at relatively higher temperature due to larger ionic size of Barium ions. The rate of BaAl₂O₄ formation is more as the interdiffusion coefficient values calculated for BaO-Al₂O₃ system were found much higher than in CaO-Al₂O₃. Sintering studies showed slower rate of densification in BaAl₂O₄ powder compacts and were due to higher molecular weight of BaAl₂O₄ though the values of apparent diffusion coefficients calculated were found to be comparable in both the systems. © 1997 Elsevier Science Ltd

Introduction

The solid state reactions between constituent particles involve the nucleation of phase at separate points on the solid surface. These nuclei grow in size and form a continuous reaction interface. Further reactions occur by diffusion of reactants across the interface. Various factors such as particle, ionic size, mixing ratio, chemical potential gradient, retention time, sintering temperature and diffusion coefficients of the reacting species govern the product formation. In general reactions occur by diffusion of ions from lower oxygen affinity oxide to higher oxygen affinity oxide. Reaction leading to aluminate formation in CaO-Al₂O₃ and BaO-Al₂O₃ system have been reported to occur (1-3) by diffusion of Ca and Ba into Al₂O₃ through rigid oxygen lattice.

The sintering in $CaAl_2O_4$ and $BaAl_2O_4$ powder compacts at higher temperatures occur by bulk mass transport through volume diffusion. Studies reveal rapid sintering rate of $CaAl_2O_4$ compared to $BaAl_2O_4$ (4,5).

The present paper highlights the comparative evaluation of CaO-Al₂O₃ and BaO-Al₂O₃ systems. The thermodynamic functions and diffusion coefficients of the formation and sintering of aluminates have been presented.

1. Formation Reactions in CaO-Al₂O₃ and BaO-Al₂O₃ System. Studies carried out in 1:1 molar mixes of CaO-Al₂O₃ and BaO-Al₂O₃ reported formation of high lime intermediate phases such

TABLE 1
Thermodynamic Functions of Formation of CaAl₂O₄ and BaAl₂O₄

System	Temp (°C)	Activation free energy (ΔG) (Kcal/mole)	Activation entropy (AS) (cal/mole/ ^O K)	Chemical potential gradient	Rate constant
	1200	113.67	-51370	12.0	4.16x10_4
CaA1204	1250 1300	116.08 119.42	-51270 -51760	13.2 14.4	8.94×10 ₋₄ 8.33×10
	1380	122.79	-51290	15.0	2.00×10 ⁻³
	1300	76.47	-4970	48.6 2	3.3 ×10 ⁻⁴
BaA1204	1350 1380	78.00 78.87	-57 6 0 -6180		0.8 ×10_4 6.6 ×10

as $C_3A_1C_{12}A_7$ in case of CaO-Al₂O₃. In BaO-Al₂O₃ system however there is a stoichiometric reaction leading to formation of BaAl₂O₄ under similar conditions of reaction. The formation of BaAl₂O₄ occur at relatively higher temperature. The rate constants and the activation thermodynamic functions determined for these oxides are given in Table 1.

The negative entropies in both cases imply a more ordered transition state than the reacting substances.

2. Interdiffusion Coefficients of Formation of CaAl₂O₄ and BaAl₂O₄. The interdiffusion coefficients calculated (1,6) at different temperatures for the formation of CaAl₂O₄ and BaAl₂O₄ are given in Table 2.

It is apparent from the table that the values of interdiffusion coefficients of formation of BaAl₂O₄ are more compared to CaAl₂O₄ indicating that the reaction leading to formation of

TABLE 2
Interdiffusion Coefficients of Formation of CaAl₂O₄ and BaAl₂O₄

System	tempeature (°C)	Interdiffusion coefficient (cm /sec)
CaA1 ₂ O ₄	1200 1250 1300 1380	13.03×10-9 21.31×10-9 29.14×10-9 41.85×10
BaA1 ₂ 0 ₄	1300 1350 1380	7.18×10-4 9.62×10 11.52×10

BaAl₂O₄ is faster than that of the formation of CaAl₂O₄. This is also evident from the higher values of rate constants for BaAl₂O₄ formation as given in Table 1. Since the ionic radius of Ba⁺² ion is 1.43 A° and higher than that of Ca⁺² ions 1.06 A° (7), the formation reaction of BaAl₂O₄ involves rapid growth of product layer at the interface. The requirement of higher temperature of reaction is due to higher size of Ba ions for transport compared to that of Ca ion. The temperature dependences of the interdiffusion coefficients for CaAl₂O₄ and BaAl₂O₄ formation are given as

D =
$$4.165 \times 10^{-4} (-\frac{36,600}{RT}) \text{cm}^2 \text{ sec}^{-1} \dots \text{ for CaAl }_{2}O_4$$

and

D =
$$9.596 \times 10^{-4} (-\frac{24,800}{RT}) \text{cm}^2 \text{ sec}^{-1} \dots \text{ for BaAl }_{2}O_4$$

3. Sintering of CaAl₂O₄ and BaAl₂O₄ and Diffusion Parameters. The sintering studies of CaAl₂O₄ and BaAl₂O₄ powder compacts reported (4,5) showed rapid rate of sintering of CaAl₂O₄ compared to BaAl₂O₄ under similar temperature conditions. Diffusion is apparently the mechanism of mass transport in sintering of solids. In volume diffusion, the atoms move through the lattices to the neck region and the particles come closer causing shrinkage of compact. Based on the values of linear shrinkage, the sintering kinetics of BaAl₂O₄ and CaAl₂O₄ have been given and the values of apparent diffusion coefficients calculated (4,5) are given in Table 3.

TABLE 3

Apparent Diffusion Coefficients in the Sintering of CaA₁₂O₄ and BaAl₂O₄

(°C) 1350 1400	coefficient (cm /sec) 9.59×10 19.82×10 19.82×10 48.25×10 71.46×10 79.59×10
	9.59×10 10.82×10
1400	10 92×10-10
1420	48.25×10 10
1440 1460	71.46×10 ₋₀₉ 14.10×10
	-09
	3.38×10 ₋₀₉ 5.16×10
1400 1450	3.38×10-09 5.16×10-09 8.91×10-09 11.20×10
	1300 1350 1400

From the Table 3, it is clear that the values of apparent diffusion coefficients of the $CaAl_2O_4$ and $BaAl_2O_4$ are comparable. The activation energy requirement for sintering of $BaAl_2O_4$ is 188 Kcal/mole and is slightly higher than that for $CaAl_2O_4$ which is 167 Kcal/mole. The relatively higher energy requirement for the densification of $BaAl_2O_4$ is due to the higher molecular weight of $BaAl_2O_4$. The higher molecular weight of $BaAl_2O_4$ affects the rate of mass transport adversely. The temperature dependence of self diffusion of the $CaAl_2O_4$ and $BaAl_2O_4$ are also shown in equations

D =
$$6.28 \times 10^{-9} (-\frac{167,000}{RT}) \text{cm}^2 \text{ sec}^{-1} \dots \text{ for CaAl}_{2} O_4$$

and

D =
$$8.04 \times 10^{-9} (-\frac{188,000}{RT}) \text{cm}^2 \text{ sec}^{-1} \dots \text{ for BaAl }_{2}O_4$$

Conclusions

- The interdiffusion coefficients of BaAl₂O₄ formation is higher as compared to CaAl₂O₄ which indicates relatively rapid formation of BaAl₂O₄. This is also evident from the lower value of activation energy for interdiffusion of BaO into Al₂O₃ as compared to CaO-Al₂O₃.
- 2. The apparent diffusion coefficients leading to sintering of CaAl₂O₄ and BaAl₂O₄ are much lower than the formation in CaO-Al₂O₃ and BaO-Al₂O₃ mixes. Thus the formation reactions are faster than the sintering processes.
- 3. The apparent diffusion coefficients of sintering of BaAl₂O₄ are comparable to that of CaAl₂O₄.

Acknowledgement

The authors have freely drawn the information/data from published literature of the NCB. This paper is being published with the permission of the Director General, National Council for Cement and Building Materials, New Delhi.

References

- 1. V.K. Singh and M.M. Ali, Trans. J. Brit. Ceram. Soc., 79, 112 (1980).
- M.M. Ali, Physico-chemical investigations on calcium aluminate cements-calcium monoaluminate. Ph.D thesis, Banaras Hindu University, India (1983).
- 3. S.J. Raina, Sanjeev Agarwal, M.M. Ali and S.K. Agarwal, 9th ICCC, New Delhi, 3, 245 (1992).
- 4. U.K. Mandal, V.K. Singh and M.M. Ali, Science of sintering, 16, 3, 187, (1984).
- 5. M.M. Ali, S.K. Agarwal, S. Agarwal and S.K. Handoo, Cem.Concr.Res., 25, 6, 1257 (1995).
- M.M. Ali, S.K. Agarwal, S. Agarwal and S.K. Handoo, Cem. Concr. Res., 25, 1, 86 (1995).
- L.H. Van Vlack, Physical ceramics for engineers, p.18, Addison-Wesley Publishing Company, Inc., USA.