

CEMENT_{AND} CONCRETE RESEARCH

Cement and Concrete Research 29 (1999) 1699-1700

Discussion

A reply to the discussion by Lucia Fernández-Carrasco

T.R.N. Kutty*

Materials Research Centre, Indian Institute of Science, Bangalore, Karnataka State PIN 560 012, India Received 19 May 1999

1. Introduction

The discussion of the work of Kutty and Nayak [1] by Fernández-Carrasco [2] is very useful. Fernández-Carrasco discusses the application of infrared (IR) absorption spectroscopy in the study of barium orthoaluminate hydrates. The main theme of the discussion is the assignment of 1440 cm $^{-1}$ absorption band by us to Al-OH-Al stretching vibrations, which according to the author is due to $\mathrm{CO_3}^{2-}$ group.

2. Reply

The CO_3^{2-} ion in a D_3 or D_{3h} site symmetry shows three IR absorption bands in the regions 1530–1320 cm⁻¹, 860–800 and 760–670 cm⁻¹, corresponding to three normal modes of vibration: asymmetric stretching (ν_3), symmetric bending (ν_2), and asymmetric bending (ν_4) vibrations [3]. The totally symmetric stretching (ν_1) vibration is usually not IR active. The ν_3 and ν_4 vibrations are degenerate in these high symmetry groups; as a result, only three bands can be observed in the IR spectrum. As the site symmetry reduces, for example for C_{2V} or C_{S} , the degeneracy of ν_3 and ν_4 vibrations will be lifted and each will split into doublets [3]. In addition, the symmetry and appears as a weak, sharp absorption band in the IR spectrum. This indicates that CO_3^{2-} shows multiple absorption bands in the spec-

trum. Hence, the presence of single strong absorption band at 1440 cm^{-1} is not sufficient to conclude the presence of CO_3^{2-} species in the compound.

The above discussion can be further substantiated by comparing the IR spectrum of BaCO₃ and hydrated barium orthoaluminates as shown in Fig. 1(a) and (b). X-ray diffraction shows BaCO₃ as the second phase on exposure of barium orthoaluminate hydrate to CO2-containing atmosphere. The spectrum of BaCO₃ shows multiple absorption bands and also shows the overtones. The assignments of these bands are done based on the above discussion. This indicates that, ν_1 , ν_2 , and ν_4 absorption bands cannot be ignored when identifying CO₃²⁻ species in an unknown sample. These bands are not present in the spectrum of barium orthoaluminate hydrate sample, as shown in Fig. 1(b), which leads us not to assign the 1440 cm⁻¹ band in the barium orthoaluminate hydrate spectrum to v_3 vibration of CO₃²⁻ group. It is significant to mention that the samples deliberately exposed to CO2 atmosphere showed all the CO₃²⁻ absorption bands in the spectrum.

References

- [1] T.R.N. Kutty, M. Nayak, Cem Concr Res 28 (10) (1998) 1393–1404.
- [2] L. Fernández-Carrasco, Cem Concr Res 29 (10) (1999) 1697–1698.
- [3] K. Nakamato, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley & Sons Inc., New York, 1963.

^{*} Corresponding author. Tel.: +91-080-309-2784; fax: +91-080-334-1683.

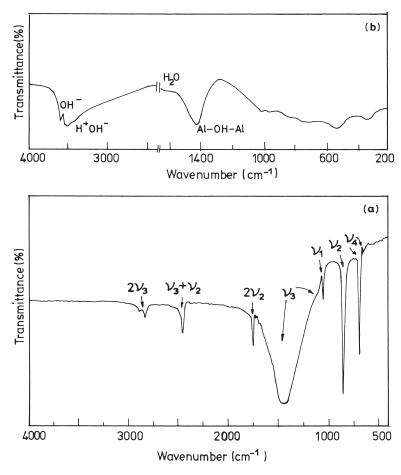


Fig. 1. IR spectra of (a) $BaCO_3$ and (b) $Ba_{0.76}Al_2(OH)_{7.52} \cdot H_2O$.