

Cement and Concrete Research 29 (1999) 355-359

Influence of titania on the formation of tricalcium silicate

N.K. Katyal ^{a,*}, R. Parkash ^b, S.C. Ahluwalia ^c, G. Samuel ^a

^aNational Council for Cement & Building Materials, 34 KM Stone NH2, Ballabgarh, 121004 Haryana, India ^bPunjab University, Chandigarh, India ^cOCL Ltd. New Delhi, India

Manuscript received 13 July 1998; accepted manuscript 18 November 1998

Abstract

The effect of titania on clinker formation has been studied by many researchers [1–5]. Its effect on the formation of pure tricalcium silicate phase and the formation of titanium compounds at 1450° C, has rarely been investigated. The present work relates to the investigation of the formation of titanium compounds in the C_3 S-TiO₂, system and to find the polymorphic forms of C_3 S. The study also attempts to establish the limit of incorporation of TiO₂ in C_3 S at 1450° C, at different levels of TiO₂ in the concentration range of 0.5–6% of TiO₂. It is found that TiO₂ affects the polymorphic form differently at different concentrations. Up to 2% TiO₂, triclinic form, 4–5% TiO₂ monoclinic, and with 6% rhombohedral form is stabilized. TiO₂ is incorporated into C_3 S up to 4.5% at 1450° C and beyond this limit a compound CaOTiO₂ is formed. Techniques used for the investigations are X-ray diffraction, optical microscopy (OM), scanning electron microscopy, with energy dispersive analysis of X-rays (EDAX) and chemical analysis. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Ca₃SiO₅; Clinker; Crystal structure; X-ray diffraction; SEM

Titania is generally present in small amounts (approximately 0.2–0.3%) in all portland cements, being derived from the clay or shale bearing TiO₂. The influence of moderate additions of titania to common portland cement raw mixes is considered that of a mineralizer. Decarbonation in raw mix is enhanced, assimilation and binding of lime is accelerated, crystallization of alite to unusually large individuals (up to 120 μm in size) is favored [6]. In small concentrations (0.5–1.0%), titania is favorable for clinkerisation. It also forms solid solutions with 3CaOSiO₂ and 2CaOSiO₂ [6]. In the system CaOTiO₂, there is formation of CaOTiO₂ and 3CaOTiO₂, possessing hydraulic properties [2].

The presence of a small quantity (<5%) of TiO₂ increases the hydraulic activity of cement [1] because of the distortion of the crystal lattice of belite and alite as a result of substitution of the Si⁴⁺ ion by the Ti⁴⁺ ion and formation of corresponding solid solutions [2].

Kuhl [7] found that in portland cement the substitution of silica by titania in small amounts slightly increased the strengths, but that in larger amounts a reduction in strength occurred. The optimum content was found to be 4.5%. He suggested that a compound 3CaOTiO₂ is formed, and early workers on the system CaO-TiO₂ claimed to have prepared

both 3CaOTiO₂ and 2CaOTiO₂. One other compound, 4CaO3TiO₂, melting incongruently at 1755°C has also been reported [8], but its existence has not been confirmed [9].

Electron probe analysis of clinkers has shown that TiO_2 is present in small amounts, presumably in solid solution, in all of the four major compounds of portland cement [10]. Therefore, only any residual amount of titania is available to form the 3CaO2TiO_2 (C_3T_2), 3CaOTiO_2 (C_3T), or CaOTiO_2 (CT) solid solution [7].

The present work mainly concerns the investigation of the formation of titanium compounds in the system 3CaOSiO_2 - TiO_2 at 1450°C . Its effect on the clinkerisation, stabilization of various polymorphic forms, and the limit of incorporation in C_3S has also been studied.

1. Experimental

1.1. Preparation of specimens

Pure tricalcium silicate and its solid solutions with titania were made by repeated firings of calcium carbonate and quartz in the stoichiometric ratio of 3:1 in the presence of varying amounts of TiO₂ from 0.5–6% by weight at 1450°C. All the materials used were of analytical reagent grade. Calcium carbonate and quartz were ground to a fine powder and homogenized with TiO₂ in anhydrous acetone. The dried mass was pressed into pellets and fired at 1450°C for

^{*} Corresponding author. Tel.: 91-129-246174; Fax: 91-129-242100; E-mail: nccbm@giasdl01.vsnl.net.in.

Table 1 % TiO₂/C₃S content

	C ₃ S							
Specimen	Pure	0.5%	1%	2%	5%	6%		
% C ₃ S	20	28	45	30	35	24		

Table 2 Crystal size of C₃S/%TiO₂

		Crysta (µm)			
Author	% TiO ₂	Min	Max	Average	Specimen
This study	0.0	5	35	14.0	Tricalcium silicate
	0.5	8	50	20.0	
	1.0	10	80	32.0	
	2.0	5	40	16.0	
	5.0	2	25	10.0	
	6.0	2	30	12.0	
Kurdowski [14]	0.0			17.9	Clinker
	0.2			19.7	
	0.4			21.3	
Knofel [4]	0.0	5	50	20.0	Clinker
	1.5	10	100	40.0	

3 h in a platinum dish in an electric furnace. The sintered pellets were ground to pass a 63- μ m sieve and reformed into pellets and fired again at 1450°C for 3 h. Samples were cooled at room temperature (\sim 27°C). This process was repeated till free lime reduced to <0.1% in the pure C₃S. The final products were examined using techniques of microscopy, chemical analysis, and X-ray diffraction (XRD).

1.2. Optical microscopy

The polished sections of the samples were etched with hydrofluoric acid (HF) and examined under a Zeiss polarising microscope (Carl Zeiss, Oberkochem, Germany) with ocular micrometer for qualitative and quantitative estimation of phases. Results are presented in Table 1 and Table 2.

1.3. Electron microscopy

Scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDAX) studies were carried out on a Philips SEM 515 with EDAX PV 9900 (EDAX International, Inc., Prairie View, IL, USA) for the microstructural

Table 3 Polymorphs of C₃S/% TiO₂

This study (1450°C)	Kondo [15] (1500°C)	VKM [18] (1500°C)	Knofel [16] (1550°C)	Maki [19](1600°C)
C_3ST_1	C ₃ S T ₁	C ₃ S T ₁	_	C ₃ S T ₁₁
C ₃ S 1% T ₁		$C_3S 1\% M_1$	<u>—</u> .	C ₃ S 1% M ₁
C ₃ S 2% T ₁₁	C_3S up to 1.75% T_{11}	C ₃ S 2% M ₁₁	C_3S up to 3.50% T_1	_
C ₃ S 4–5% M ₁ C ₃ S 6% R		$C_3S > 2\% R$	3.5–4.5% T ₁₁ above 4.5% M ₁	_

Table 4 % Free lime/% TiO₂

	C_3S							
Specimen	Pure	0.5%	1%	2%	4%	6%		
% free lime								
After 3 h	4.5	3.82	2.38	2.95	3.5	3.96		
After 6 h	1.98	1.21	0.90	1.25	1.60	1.90		

Table 5 % Free lime in final products/% TiO₂

	C ₃ S						
Specimen	Pure	0.5%	1%	2%	4%	5%	6%
% free lime	0.05	0.04	0.06	0.08	0.10	0.98	1.52

and morphological features, limit of incorporation of ${\rm TiO}_2$ into ${\rm C}_3{\rm S}$, and its distribution.

1.4. X-ray diffraction studies

Samples were powdered to pass a 45- μ m sieve and examined using Rigaku Rad Max system (Rigaku International Co., Tokyo, Japan), with Co K α radiations and wide angle horizontal goniometer and graphite monochromator. Results are presented in Table 3.

1.5. Chemical analysis

Free lime was estimated using ethylene glycol method [10]. Results are presented in Table 4 and Table 5.

1.6. Separation of titanium compounds

Maleic acid and methanol digestion method [11] was adopted to separate the titanium compounds formed. The nonsilicate residue left behind after the separation could not be digested with hydrochloric acid, hence it was solubilized by fusing with sodium carbonate at 1050°C for 20 min in a furnace. Subsequently it was treated with hydrochloric acid, evaporated to dryness in a beaker, and baked at 110°C to remove any SiO₂ present. Again, it was treated with concentrated hydrochloric acid and distilled water, heated to below boiling, filtered, and prepared up to 500 ml. Calcium was estimated in the solution by titrating with 0.01 M-EDTA, using Patton & Reeders reagent indicator at pH 12 [12]. TiO₂ was estimated by colorimetric method by complexing with hydrogen peroxide [13].

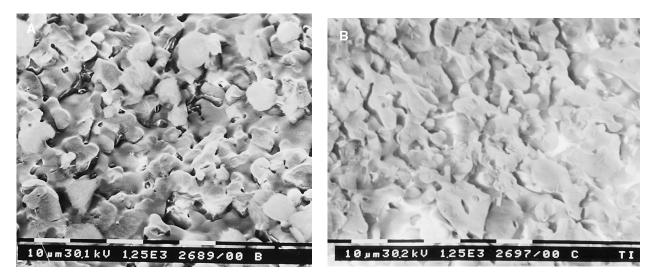


Fig. 1. Crystals of C₃S with varying percent of TiO₂: (A) 1%; (B) 2%.

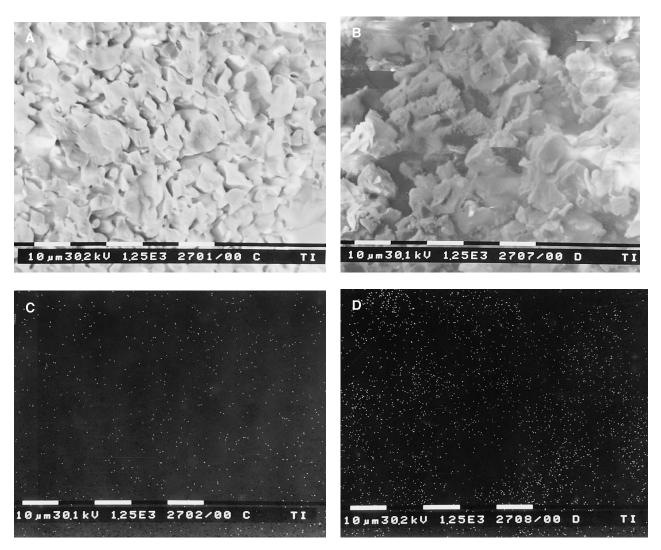


Fig. 2. (A-D) Distribution of TiO₂. C₃S with 4% TiO₂ (A, C); C₃S with 6% TiO₂ (B, D).

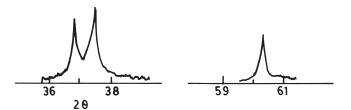


Fig. 3. C₃S (6% TiO₂), rhombohedral form.

2. Results and discussion

2.1. Optical microscopy

After first firing of the pure C_3S and TiO_2 doped specimens at 1450°C for 3 h, the quantitative estimation of the C_3S content was done by point count method. Results are given in Table 1. The crystal size of C_3S formed in the final products was also estimated with optical microscopy (OM). Results are presented in Table 2, along with data reported by other workers. Results prove that the crystal size is increased with the introduction of TiO_2 and is maximum when TiO_2 is 1%. Size begins diminishing with $TiO_2 > 1\%$.

2.2. Electron microscopy

The microstructural and morphological features of the tricalcium silicate samples doped with various concentrations of TiO₂ (0.5, 1, 2–6%) were analyzed under scanning electron microscope and EDAX including electron probe X-ray mapping to determine the distribution of Ti. Samples with 0.5% and 1% TiO₂ show well-formed larger size hexagonal C₃S crystals as compared to pure undoped C₃S phase. Specimens with higher content of TiO₂ show distorted crystals. Micrographs are presented in Fig. 1.

The elemental distribution for Ti X-ray mapping indicate an even distribution of Ti in the tricalcium silicate up to 4%. Beyond 4% it is mainly located in the interstitial. Micrographs are presented in Fig. 2. EDAX analysis showed C₃S to contain up to 4.5% TiO₂, indicating the

limit of incorporation of TiO_2 to be 4.5% at 1450°C (average of six samples and five point analysis on each sample). Kondo and Yoshida [15] reported this limit to be 0.13 mole of $3CaOTiO_2$ ($TiO_2 = 4.6\%$ by weight) at 1500°C and 0.14 mole $3CaOTiO_2$ ($TiO_2 = 4.9\%$ by wt.) at 1600°C respectively. Knofel [16] reported the limit of incorporation of TiO_2 in C_3S to be 5 + 0.3% at 1500°C.

The formation of any titanium compounds could not be detected, probably because of the small amount of these compounds, although these compounds have been detected by XRD and chemical analysis. Knofel [16] detected $Ca_3Ti_2O_7$ (C_3T_2) in the sample of C_3S containing 6% TiO_2 fired at $1500^{\circ}C$ for 12 h using electron beam microanalysis. In addition to C_3T_2 , another compound having formula $14CaO5SiO_22TiO_2$ ($C_{14}S_5T_2$, calculated from its composition as analyzed by electron beam microanalysis) was also detected.

2.3. XRD analysis

There are basically seven polymorphic forms in which C_3S exists. TiO_2 if present in the lattice of C_3S leads to the formation of monoclinic or rhombohedral form of C_3S [17]. The various polymorphs with different concentrations of TiO_2 as detected by XRD are given in Table 3, in comparison to the findings of the other researchers. Fig. 3 shows the rhombohedral form of C_3S containing 6% TiO_2 .

XRD studies of the specimens do not reveal any titanium compound up to 2% TiO_2 . In the specimens containing 5 and 6% TiO_2 , C_2S and calcium titanium oxide CaOTiO_2 have been identified. The two peaks obtained at $2\theta = 27.02$ (d = 3.824 Å) and $2\theta = 38.62$ (d = 2.701) (CoK α) show the presence of CaOTiO_2 (Fig. 4).

As the peaks representing $CaOTiO_2$ were not very sharp, it was difficult to ascertain the formation of the $CaOTiO_2$ phase. The sample containing 6% TiO_2 was digested with maleic acid and methanol [11] to remove all the silicate phases and free lime. The residue obtained was examined by XRD. The presence of $CaOTiO_2$ was confirmed (Fig. 5). Peaks representing $CaOTiO_2$ are $2\theta = 27.02$ (d = 3.824 Å), $2\theta = 38.62$ (d = 2.701 Å), $2\theta = 45.740$ (d = 2.303 Å) and $2\theta = 47.64$ (d = 2.217 Å).

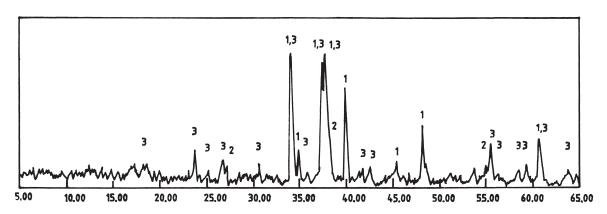


Fig. 4. XRD of C₃S with 6% TiO₂ (1 C₃S; 2 CaOTiO₂; 3 C₂S).

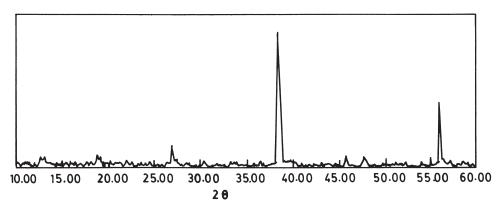


Fig. 5. XRD of chemically separated nonsilicate residue.

Knofel [4] studied the effect of TiO₂ on a laboratory clinker. TiO₂ in graduated quantities of up to 3.9% was mixed with the raw materials for this clinker. The specimens were burned at 1450°C. The XRD investigation of the fired specimens confirmed the decrease in alite with increasing TiO₂ content. Titanium phases [titanite (CaO-TiO₂SiO₂), pervoskite (CaOTiO₂), etc.] were not detected by X-ray examinations in any specimen.

2.4. Chemical analysis

Free lime content of the specimens fired repeatedly for 3 h at 1450° C (results of two firings) is as presented in Table 4. With up to 1% TiO₂ there is a decrease in the free lime and beyond this there is an increasing trend. Addition of 1% TiO₂ reduces the free lime in one firing to almost same level as obtained by two firings in the case of pure C₃S.

Free lime content in the final products (when % free lime in pure C_3S is reduced <0.1%) is as reported in Table 5. The free lime content is found to be <0.1% when the amounts of TiO_2 were in the range of 0–4%. Presence of free lime is observed only when TiO_2 is 5.0%. This shows that TiO_2 is substituted for SiO_2 up to approximately 4–5%.

Knofel [16] reported that TiO_2 is substituted for SiO_2 up to approximately 4.5–5.0% in tricalcium silicate at 1550°C. Volkonskii et al. [2] reported that the maximum content of TiO_2 in tricalcium silicate in the form of solid solution may reach 2–3%. The nonincorporated TiO_2 combines with CaO to form the crystalline product $CaOTiO_2$.

CaO as determined by EDTA titration in the solution of the residue obtained by maleic acid-methanol treatment gave a value of 41.01%. TiO_2 in the same residue was found to be 58.43%. The molar ratio of CaO to TiO_2 from these results equals one, which confirms the presence of $CaOTiO_2$ compound.

3. Conclusions

Titanium dioxide has a positive effect on the formation of tricalcium silicate up to 1% only. Crystal size of C₃S is

increased. Higher concentrations have a deleterious effect on its formation. C_3S up to 2% TiO_2 adopts triclinic form, 4–5% adopts monoclinic form, and 6% adopts rhombohedral form at 1450°C.

TiO₂ is incorporated in C₃S up to 4.5% at 1450°C. Beyond this limit, a compound CaOTiO₂ is formed at 1450°C.

Acknowledgments

The work reported here is a part of PhD work of one of the authors (N.K. Katyal), carried out at National Council for Cement & Building Materials. This paper is being published with the permission of Dr. S.P. Ghosh, Director General of the Council.

References

- [1] I. Teoreanu, M. Muntean, H. Balusoiu, Il Cemento, 4 (1987) 397–404.
- [2] B.V. Volkonskii, S.D. Makashev, N.P. Shtejert, Tsement 6 (1974) 17–19.
- [3] I.L. Luginina, R.G. Nigmadilova, Int. Symp. Cem. Chem., Brasil, vol. 6, 1986, p. 510.
- [4] Von D. Knofel, Siegen ZKG, 4 (1977) 191-196.
- [5] M. Georgescu, A. Puri, Mater Constr (Bucharest) 12 (1982) 177-82.
- [6] W. Eitel, Silicate Science, vol. V, Academic Press, New York, 1966, pp. 334–335.
- [7] Kuhl, F.M. Lea, The Chemistry of Cement & Concrete, Edward Arnold Publishers, London, 1976, pp. 75–76.
- [8] R.S. Roth, J. Res. Natn Bur Stand, 61 (1958) 437.
- [9] J.A. Imlach, F.P. Glasser, Trans Br Ceram Soc 67 (1968) 581.
- [10] Bureau of Indian Standards, 4032-1985 India.
- [11] J.E. Mander, L.D. Adams, E.E. Larkin, Cem Concr Res 4 (1974) 533–544.
- [12] A.I. Vogel, Quantitative Inorganic Analysis, 3rd edition, The English Language Book Society and Longman, London, 1971, p. 439.
- [13] A.I. Vogel, Quantitative Inorganic Analysis, 3rd edition, The English Language Book Society and Longman, London, 1971, p. 788.
- [14] W. Kurdowski, I-4 VI Int. Cong. on Chem. Cem., Moscow, 1974
- [15] R. Kondo, K. Yoshida, 5th Int. Symp. on the Chem. Cement, Tokyo, I-262, 1968, pp. 262–274.
- [16] Von D. Knofel, Siegen ZKG, 1 (1979) 35-40.
- [17] I. Maki, K. Kato, Cem Concr Res 12 (1982) 93-100.
- [18] V.K. Mathur, R.K. Goswamy, K.M. Sharma, NCB Int. Seminar on Cem. & Building Mat., New Delhi, India, VIII-37, 1991.
- [19] I. Maki, M. Hattori, Il Cemento 2 (1989) 131-140.