

Available online at www.sciencedirect.com

Cement and Concrete Research 34 (2004) 901

Discussion

A discussion of paper "Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali−silica reactivity by M.-A. Berube, J. Duchesne,

J.F. Dorion and M. Rivest

Tang Mingshu*

College of Materials Science and Engineering, Nanjing University of Technology, 5 Xin Mo Fan Road, Nanjing, Jiangsu 210009, China

Received 8 October 2002

The results of this paper are very interesting and very important for design of new concrete structures. Particularly we should pay much attention on the significant conclusion that the amount of alkali released by aggregate may be varied from < 0.1 to 12.7 kg/m^3 . It seems that there is no reason to doubt of the truth of alkali being released from aggregate and the amount can't be neglected. However, the question is whether the alkali released by aggregate "equivalent effectiveness" as the alkali released by cement clinker. The latter contains 60-65% CaO, consequently the products of hydration are saturated by CaO, such as $1.7\text{CaO.SiO}_2.2.1\text{H}_2\text{O}$, C_4AH_{13} , $\text{C}_3\text{A.3CaSO}_4.32\text{H}_2\text{O}$ et al. It means that all the products of hydration of Portland cement are high "basicity", the ratio of CaO/SiO₂(Al₂O₃ et al.) is high enough so

that the alkali can't be detained in them. But the condition of release of alkali by aggregate is quite different. For example, when the potash feldspar (K₂O.Al₂O₃.6SiO₂) releases the K₂O, the residue is Al₂O₃ and SiO₂, thus, the residue may detain some alkali, unless these acidic oxides will be combined with CaO to form high basic products. In the field conditions of concrete structures, we don't know what degree of such chemical process can be finished. As comparison, the alkali released by mineral admixtures may not be "equivalent effectiveness" as that released by Portland cement. So far, the foregoing discussion illustrates that a further study on the "effectiveness" of alkali released by aggregate is necessary, especially it should prove whether it is "equivalent effectiveness" as that released by Portland cement.

doi:10.1016/j.cemconres.2003.10.003

0008-8846/\$ – see front matter $\ensuremath{\text{@}}$ 2004 Elsevier Ltd. All rights reserved.

[☆] Cem. Concr. Res. 32 (2002) 1215–1228.

^{*} Tel.: +86-25-331-6755x3229; fax: +86-25-324-1922. *E-mail address:* tangms@njuct.edu.cn (T. Mingshu).