
Available online at www.sciencedirect.com

Cement and Concrete Research 35 (2005) 423-424

Erratum

Erratum to "Predicting Ca(OH)₂ content and chemical shrinkage of hydrating cement pastes using analytical approach" [CCR 34 (2) (2004) 225–265]

Pierre Mounanga^{a,*}, Abdelhafid Khelidj^a, Ahmed Loukili^b, Véronique Baroghel-Bouny^c

^aLaboratoire Génie Civil de Nantes Saint-Nazaire, IUT de Saint-Nazaire, BP 420, 44606 Saint-Nazaire, France ^bEcole Centrale de Nantes, BP 92101, 44321 Nantes cedex 3, France ^cLaboratoire Central des Ponts et Chaussées, 58 Bd Lefebvre, F-75732 Paris cedex 15, France

Received 13 July 2004

Parts of Table 2, Figs. 7 and 8 in the published version of this paper were incorrect. The correct version of Table 2, Figs. 7 and 8 are presented here.

Also, the density value of FH₃ used is 3.00 g/mm³ (instead of the value of 2.20 g/mm³, indicated in Table 1 of the published version).

Table 2
Chemical shrinkage and Ca(OH)₂ amount produced by the modelling hydration reactions

Equations	Chemical shrinkage (ΔV) Per g of hydrating compound	$\frac{\text{Ca(OH)}_2 \text{ content (CH)}}{\text{Per g of hydrating compound}}$
(2)	$52.5 \text{ mm}^3/\text{g of C}_3\text{S}$	$0.4219 \text{ g/g of } C_3S$
(3)	$40.9 \text{ mm}^3/\text{g of C}_2\text{S}$	$0.1291 \text{ g/g of } C_2S$
(4)	$281.4 \text{ mm}^3/\text{g of C}_3\text{A}$	_
(5)	24.8 mm ³ /g of ettringite	_
(6)	175.3 mm ³ /g of remaining C ₃ A	_
(7)	$175.0 \text{ mm}^3/\text{g of C}_4\text{AF}$	$0.1525 \text{ g/g of } \text{C}_4\text{AF}$
(8)	39.1 mm ³ /g of ettringite	0.1181 g/g of ettringite
(9)	116.0 mm ³ /g of remaining C ₄ AF	0.1525 g/g of C ₄ AF

DOI of original article 10.1016/j.cemconres.2003.07.006.

^{*} Corresponding author. Tel.: +33 2 40 17 86 17; fax: +33 2 40 17 81 60.

424 Erratum

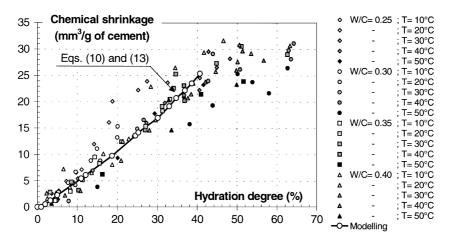


Fig. 7. Evolution of the chemical shrinkage of different cement pastes as a function of hydration degree—comparison between experimental and simulated results.

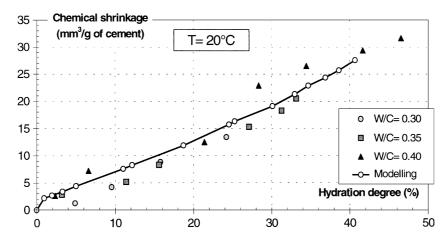


Fig. 8. Evolution of the chemical shrinkage of cement pastes with W/C=0.30, 0.35, 0.40 cured at 20 °C as a function of hydration degree—comparison between experimental and simulated results.

Acknowledgement

Thanks are due to Dr. Dale P. Bentz for pointing out the mistakes in numerical values.