Two Phase Refinements of the Structures of α -Si₃N₄ and β -Si₃N₄ Made from Rice Husk by Rietveld Analysis

Ping Yang,^a Hoong-Kun Fun,^{a*} Ismail Ab. Rahman^b and Mohd. Idiris Saleh^b

^aSchool of Physics, ^bSchool of Chemistry, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

(Received 17 January 1994; accepted 9 March 1994)

Abstract: The crystalline structures of α-Si₃N₄ and β-Si₃N₄ made from rice husk were obtained at room temperature (300 K) from X-ray powder diffraction with CuKα radiation using Rietveld analysis for the two phase mixture. For α-Si₃N₄ at 300 K, crystal data: $Mr = 140 \cdot 285$, the rhombohedral system, P31c, $a = 7 \cdot 7650(4)$ Å, c = 5.6275(2) Å, $V = 293 \cdot 85(2)$ Å³, Z = 4, $Dx = 3 \cdot 1709$ g cm⁻³, $\mu = 133 \cdot 474$ cm⁻¹ (λ = 1 ·5406 Å), $F(000) = 280 \cdot 0$, the structure was refined with 29 parameters to $R_b = 2 \cdot 42\%$, $R_f = 1 \cdot 78\%$ for 243 peaks. For β-Si₃N₄ at 300 K, crystal data: $Mr = 140 \cdot 285$, the hexagonal system, P6₃/m, $a = 7 \cdot 6093(8)$ Å, $c = 2 \cdot 9079(2)$ Å, $V = 145 \cdot 81(2)$ Å³, Z = 2, $Dx = 3 \cdot 1951$ g cm⁻³, $\mu = 134 \cdot 492$ cm⁻¹ (λ = 1 ·5406 Å), $F(000) = 140 \cdot 0$, the structure was refined with 17 parameters to $R_b = 3 \cdot 02\%$, $R_f = 1 \cdot 88\%$ for 145 peaks. The whole diffraction was fitted and refined with 46 parameters to $R_{wp} = 6 \cdot 98\%$, $R_p = 5 \cdot 33\%$ for 3301 step intensities and 'goodness of fit' $S = 3 \cdot 50$.

1 INTRODUCTION

 Si_3N_4 is important in industry because of its good refractory properties and high temperature ceramic properties and has been extensively studied.^{1,2} Previous studies showed that there were two types of structures for Si_3N_4 with α phase (rhombohedral)^{3,4} and β phase (hexagonal).⁵⁻⁸ Moreover different space groups P6₃ and P6₃/m were assigned to β -Si₃N₄.^{7,8}

This article presents the structural parameters of α -Si₃N₄ and β -Si₃N₄ at 300 K by Rietveld analysis from the diffraction of the mixed two phase powder.

2 SAMPLE PREPARATION

The submicrometer Si₃N₄ powder was prepared from rice husk.⁹ The prewashed rice husk was digested with hot HNO₃ and then pyrolysed at 800°C to a constant weight under a flow of argon

*To whom correspondence should be addressed.

gas. Si₃N₄ powder was produced by the carbothermal reduction and nitridation of the pyrolysed digested husk at 1430°C. After nitridation, the product was burned in a muffle furnace at 700°C for 30 min in order to remove any excess carbon.

3 EXPERIMENT AND REFINEMENT

A standard Siemens D-5000 sample holder was used. The Si_3N_4 powder was gently pressed into the sample holder and then carefully serrated with a razor blade to make a smooth surface and to minimize any possible preferred orientation in the specimen.

The diffraction data for Rietveld analysis were collected at room temperature (300 K) with the Siemens D-5000 powder diffractometer, Bragg-Brentano geometry, diffracted-beam graphite (0002) monochromator, $CuK\alpha$ radiation, 40 KV of tube voltage and 30 mA of tube current, stepscan-size of 0.04°, radius of the diffractometer 216 mm. With counting time 70 s, divergence slit DS = 0.8°, anti-scattering slit AS = 1.0°, receiving slit

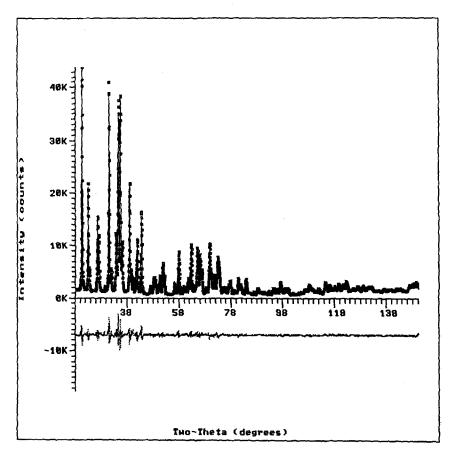


Fig. 1. Observed (dotted), calculated (curve) data and residuals of the powder diffraction patterns for α -Si₃N₄ and β -Si₃N₄. Residual is the difference between observed and calculated data: $I_{obs}-I_{cal}$.

Table 1. Structure parameters of α -Si₃N₄ by Rietveld analysis at 300 K with ESDs in parentheses

Formula: Temperature Space group Crystal Data):	F(000) =	300 K		Z = 4 Dx = 3.1709 g/cm ³		
Cell paramet	ers (Rietveld refin	a = 7.76	a = 7.7650(4) Å c = 5.6275(2) Å		V ≈ 293·85(2) ų		
Refinements $R_b \approx 2.42$ and	of the structure: I R _f = 1.78%						
Atom Si(1) Si(2) N(1) N(2) N(3) N(4)	Site 6c 6c 2a 2b 6c 6c	x 0-5106(3) 0-1658(2) 0 1/3 0-3488(6) 0-3159(5)	y 0.0815(3) 0.2520(2) 0 2/3 -0.0383(8) 0.3165(6)	2 0·1904(4) -0·0168(4) -0·029(2) 0·634(2) -0·022(1) 0·241(1)	B _{iso} (Ų) 0-73(3) 0-54(3) 0-26(3) 0-3(2) 0-8(1) 0-1(1)	Occupancy 1 1 1 1 1 1 1	
		s (Å) and angles (degre	ees)* for two types	of the Si-N tetrahed	dra:		
Bond lengths Si(1)-N11: [†] Si(1)-N12: Si(1)-N13: Si(1)-N14:	s:	1.739(3) 1.644(5) 1.774(6) 1.825(6)		5i(2)-N21: 5i(2)-N22: 5i(2)-N23: 5i(2)-N24:	1.724 1.709 1.929 1.766	5) (6)	
Bond angles: N13-Si(1)-N' N12-Si(1)-N' N12-Si(1)-N' N11-Si(1)-N' N11-Si(1)-N' N11-Si(1)-N'	14: 14: 13: 14: 13:	102-4(3) 111-0(3) 114-5(3) 112-1(2) 101-9(2) 114-2(2)	! ! !	N23-Si(2)-N24: N22-Si(2)-N24: N22-Si(2)-N23: N21-Si(2)-N24: N21-Si(2)-N23: N21-Si(2)-N22:	115-3(100-2(103-2(110-6(111-2(115-9((3) (2) (2) (2) (2)	

^{*}Calculated using PARST.12

¹The notations are for N atoms of the Si-N tetrahedra, similar to previous references.^{4,7}

RS = 1.0 mm, the data were collected over the range from 18–150°. The powder diffraction pattern is as shown in Fig. 1, in which only α -Si₃N₄ and β -Si₃N₄ phases exist.

The Rietveld analysis program version DBWS-9006PC (release 12.8.91)^{10,11} was used. The background was refined with a fifth order polynomial. The profile was refined with a pseudo-Voigt function. The preferred orientation (001) was refined with a March-Dollas function. No absorption correction was taken into account. The wavelengths of the $CuK\alpha_2$, $CuK\alpha_1$ and the intensity ratio were chosen as 1.5444 Å, 1.5406 Å and 0.497, respectively. The isotropic thermal parameters could be refined to the reasonable values. For α -Si₃N₄, the structure was refined with 29 parameters to $R_{\rm b} = 2.42\%$, $R_{\rm f} = 1.78\%$ for 243 peaks. For β -Si₃N₄, the structure was refined with 17 parameters to $R_b = 3.02\%$, $R_f = 1.88\%$ for 145 peaks. The whole diffraction pattern was fitted and refined with 46 parameters to $R_{\rm wp} = 6.98\%$, $R_{\rm p} = 5.33\%$ for 3301 step intensities and 'goodness of fit' S = 3.50.

The refinement was performed according to the following group order: (1) scale factor; (2) background; (3) zero point shift/sample displacement, transparency coefficient; (4) cell parameters; (5) peak shape; (6) half width; (7) asymmetry parameter and preferred orientation; (8) atom position parameters, and (9) isotropic thermal parameters.

The refined structure parameters are listed in Tables 1 and 2. The data, fitting curves and the differences (residuals: $I_{\rm obs}$ $-I_{\rm cal}$) are shown in Fig. 1. The numbers in the parentheses in the tables are the estimated standard deviations (ESDs). x, y, z are the fractional coordinates and $B_{\rm iso}$ the equivalent thermal parameter. R-values are defined as follows:

$$R_{\text{wp}} = \left[\frac{\sum w_i (Y_{io} - Y_{ic})_2}{\sum w_i Y_{io}^2}\right]^{1/2} \quad R_{\text{p}} = \frac{\sum |Y_{io} - Y_{ic}|}{\sum Y_{io}}$$

$$R_{b} = \frac{\sum |I_{ko} - I_{kc}|}{\sum I_{ko}} \qquad R_{f} = \frac{\sum |F_{ko} - F_{kc}|}{\sum F_{ko}}$$

where Y_{io} and Y_{ic} are observed and calculated intensities at step i, I_{ko} and I_{kc} are the peak intensities observed and calculated for kth peak, F_{ko} and F_{kc} are the observed and calculated structure factors, w_i is the weight $(= 1/Y_{io})$.

4 RESULTS AND DISCUSSION

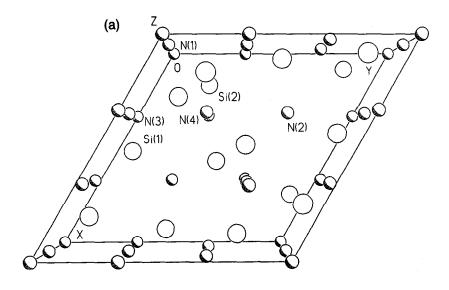

The structures were refined with space group P31c for α -Si₃N₄ and P6₃/m for β -Si₃N₄. The structural parameters are as listed in Tables 1 and 2. The (0001) projections of the structures are shown in

Table 2. Structure parameters of β -Si₂N, by Rietveld analysis at 300 K with ESDs in parentheses

Formula:		Si₃N₄					
Temperature:		300 K p6₃/m			7 0		
Space group: Crystal data*:		ρο ₉ /π <i>Mr</i> = 14	10.285		Z = 2 $Dx = 3.1951 \text{ g/cm}^3$		
Crystal data .		F(000) =			DX = 3. 199 1 g/cm		
			.492 cm ⁻¹ (λ = 1⋅540	6 Å)			
Cell paramete	ers (Rietveld refin	•	(10)	,			
	,)93(8) Å		<i>V</i> = 145⋅81(2) ų		
		c = 2.90	c = 2.9079(2) Å				
Refinements of	of the structure:				·		
$R_{\rm b} = 3.02\%$ an	d <i>R</i> _f = 1.88%						
Atom	Site	x	y	z	B_{iso} (\mathring{A}^2)	Occupancy	
Si(1)	6h	0.1742(7)	-0.2322(7)	1/4	0.51(8)	1	
N(1)	2c	1/3	2/3	1/4	0.9(5)	1	
N(2)	6h	0.329(2)	0.039(2)	1/4	2-0(3)	1	
Selected inter	atomic distance:	s (Å) and angles (degr	ees)* for the Si–N te	etrahedron:			
Bond lengths:	:						
Si(1)–N11: [†]		1.729(5)					
Si(1)-N12:		1.79(1)					
Si(1)-N13:		1.709(9)					
Si(1)-N14:		1.709(9)					
	4.	11C C(E)					
Bond angles:	4:	116-6(5)					
N13-Si(1)-N1	A ·	305.30(3)					
N13-Si(1)-N1 N12-Si(1)-N1		105-10(1) 105-10(1)					
N13-Si(1)-N1 N12-Si(1)-N1 N12-Si(1)-N1	3:	105-10(1)					
N13-Si(1)-N1 N12-Si(1)-N1	3: 4:						

^{*}Calculated using PARST.13

The notations are for N atoms of the Si-N tetrahedra, similar to previous references.4.7

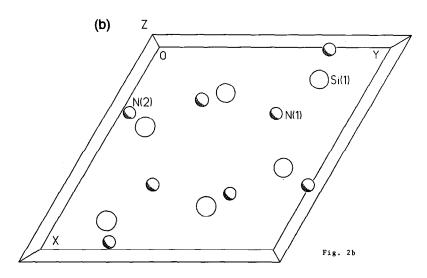


Fig. 2. Projections of the structures for, (a) α -Si₃N₄, and (b) β -Si₃N₄.

Fig. 2(a) and (b), respectively for α -Si₃N₄ and β -Si₃N₄. The results reveal that pure α -Si₃N₄ and β -Si₃N₄ can be made from rice husks and the structures are the same as those made from Si.^{4,7} The ratio of crystalline α -Si₃N₄ and β -Si₃N₄ can be obtained by the following formula:¹²

$$S_j = \frac{K \cdot V_j}{\Omega_j^2 \cdot \bar{\mu}}$$

The scale factor S_i is obtained from

$$I_i = S_i \cdot [n \cdot |F|^2 \cdot Lp \cdot e^{-M}]_i$$

where I_j is the integrated intensity, S_j the scale factor, n the multiplicity factor, F the structure factor, Lp the Lorentz polarization factor and e^{-M} the Debye-Waller factor for phase j, K a constant, V_j the fractional volume of phase j in the powder, Ω_j the volume of unit cell of phase j and $\bar{\mu}$ the average absorption coefficient of the sample. From the

refinements, the overall scale factors are 0.0323 and 0.0118, respectively for α -Si₃N₄ and β -Si₃N₄. The weight percentages are then calculated out to be 91.7 wt% (α -Si₃N₄) and 8.3 wt% (β -Si₃N₄).

The atomic coordinates, selected bond lengths and bond angles for Si–N tetrahedra are listed in Tables 1 and 2 for α -Si₃N₄ and β -Si₃N₄, respectively. The results are compared to the previous structure determinations.^{4,7} One may notice that the coordinates and isothermal parameters of N atoms have less precision than those of Si atoms. This is because N atoms are very light and not very sensitive to the diffraction data.

Space group P6₃ for β -Si₃N₄ was also used for another refinement where the 2 coordinates were refined for the N atoms replacing the special position in the z=1/4 (mirror plane) in P6₃/m. Nearly the same R-values were obtained, i.e., $R_b=2.53$, $R_f=1.83\%$ for α -Si₃N₄, $R_b=3.19$, $R_f=1.93\%$ for β -Si₃N₄ and $R_{wp}=7.12$, $R_p=5.40\%$. But the

Table 3. Observed and calculated intensities of the powder diffraction pattern for α -Si₃N₄ in P31c (λ = 1.5406Å)

			3 4			
2-theta (degree)	<i>d</i> (Å)	l _{obs} (observed	l _{calc})(calculated	h d)	k	1
13.16	6.7247	*	19.34	0	1	0
20.56	4.3157	100-00	95.34	ŏ	i	1
22.89	3.8825	50.04	44.92	-1	2	ò
	3.3623	35.32	33.52	0	2	ŏ
26.49		96·69	99.08	Ö	2	1
30.96	2.8864 2.8138	10.30	99.00	0	0	2
31.78			94.46	0	1	2
34.53	2.5957	89-13		-1	3	Õ
35.28	2.5417	92.83	100.00	-1 -1	3	1
38-85	2.3164	52-30	17₊18 43⋅33	- i	2	1
38.85	2.3164	10.15		_	2	
39.52	2.2783	10-15	3·70	-1	2 1	2 2
39.52	2.2783	0.00	5.17	1		2
40-20	2.2416	6.60	4.49	0	3	0
41.83	2.1579	24.80	32.82	0	2 3	2
43.42	2.0824	38.97	45.93	0	3	1
48-21	1.8861	7.35	0.33	-1	3	2
48-21	1.8861	- 04	9.29	1	2	2
48.79	1.8651	5.91	8.39	-1	4	0
50.47	1.8069	8.24	12.63	0	1	3
51.58	1.7704	14.31	19.48	-1	4	1
51.58	1.7704	- 40	0.11	1	3	1
56 ⋅10	1.6381	5.12	8.59	0	2	3
57.64	1.5979	20-61	21.58	-2	4	2
57.64	1.5979		7.06	2 -2	2 5	2
62.36	1.4879	23.14	1.38	-2	5	1
62.36	1.4879		36-13	2	3	1
64.75	1.4386	20.07	31.81	0	3	3
65.70	1.4200	18.94	26.94	-1	5	1
65.70	1.4200		2.43	1	4	1
66-39	1.4069	11.61	16.52	0	0	4
69-42	1.3528	24.43	18-04	-2	5	2
69.42	1.3528		22.92	2	3	2
71-23	1.3227	8.61	5.17	-1	2	4
71.23	1.3227		0.81	1	1	4
71-24	1.3226		3.48	-1	4	3
71-24	1.3226		5.09	1	3	3
72-60	1-3011	17.83	7.94	-1	5	2 2
72.60	1.3011		16.72	1	4	
73-05	1.2942	11.23	14.59	-3	6	0
76-84	1.2396	7⋅20	6⋅11	-2	6	1
76-84	1.2396		1.76	2	4	1
77-48	1-2309	6-30	6-76	-1	3	4
77.48	1.2309		4.56	1	2 3	4
80.55	1.1916	7.47	0.70	0	3	4
80.56	1.1915		10.75	-2	5 3	3
80.56	1.1915		2.78	2	3	3
83.59	1.1558	7.32	0.72	-1	5	3
83.59	1.1558		8-41	1	4	3
96.92	1.0291	5.51	3.61	-1	3 2	5
96.92	1.0291		3.74	1	2	5 2
96-94	1.0290		1.07	-3	7	2
96.94	1.0290		0.39	3	4	2
114-17	0.9176	5.60	1.79	-4	8	2 2 2
114-17	0.9176		2.27	4	4	
122-19	0.8799	5.86	0.42	-1	3	6
112-19	0.8799		0.70	1	2	6
122-22	0.8798		2.99	-1	8	1
122-22	0.8798		0.89	1	7	1

The observed intensities were obtained directly from the Siemens D5000 powder diffractometer. The calculated intensities were obtained using XPOW, Version 4.2, Siemens Analytical X-ray Inst. Inc., 1990; with the structure parameters from Table 1 by Rietveld refinement. (The preferred orientation and monochromator correction are not taken into account. Atomic scattering factors are for Si and N and anomalous dispersion correction was used.) Only lines with observed intensities greater than 5% are listed.

Table 4. Observed and calculated intensities of the powder diffraction pattern for β -Si₃N₄ in P6₃/m (λ = 1.5406 Å)

2-theta (degree)	<i>d</i> (Å)	l _{obs} (observed	l _{calc} l)(calculate	d) h	k	1
13.43	6.5898	*	31.21	0	1	0
23.36	3.8047	36-17	31-19	-1	2	Ŏ
27.04	3.2949	94.40	97·25	ò	2	Ö
33.66	2.6604	100.00	94.84	ŏ	1	1
36.03	2.4907	81.93	100-00	–1	3	Ó
41.38	2.1803	32.54	32.98	Ó	2	1
49.85	1.8277	9.34	13.07	-3	4	Ó
49.85	1.8277		0.25	-1	4	0
52-14	1.7527	28-43	46-08	0	3	1
61-26	1.5118	9.50	10-88	-3	5	0
61-26	1.5118		7.07	-2	5	0
63.98	1.4540	11.65	17.07	0	0	2
64.78	1.4380	6.30	6.02	-4	5	0
64.78	1.4380		3.46	-1	5	0
70.09	1-3414	30-38	46.40	-3	5	1
70.09	1.3414		6.25	-2	5	1
75.68	1.2557	8.94	0.45	-2	3	2
75.68	1.2557		20.31	-1	3	2
89-29	1.0962	3⋅26	0.00	-5	6	1
89-29	1.0962		5.70	-1	6	1
101·90	0.9919	2.67	3.02	-5	7	1
101-90	0.9919		0.27	-2	7	1
104-15	0.9765	2.35	3.38	0	5	2
123.91	0.8728	3.85	0-09	-7	8	0
123-91	0.8728		2.50	-1	8	0
141-47	0.8160	5⋅13	2.40	-3	5	3
141-47	0.8160		0⋅29	-2	5	3 3
146-80	0.8038	3.26	0-00	-4	5	3
146-80	0.8038		1.05	-1	5	3

The observed intensities were obtained directly from the Siemens D5000 powder diffractometer. The calculated intensities were obtained using XPOW, Version 4.2, Siemens Analytical X-ray Inst. Inc., 1990; with the structure parameters from Table 2 by Rietveld refinement. (The preferred orientation and monochromator correction are not taken into account. Atomic scattering factors are for Si and N and anomalous dispersion correction was used.) Only lines with observed intensities greater than 5% are listed.

*Out of the observation range.

coordinates were quite near the mirror plane (z = 1/4) in that z-1/4 = 0.06(1) for N1 and z-1/4 = 0.03(3) for N2. Furthermore, since $z-1/4 = \sigma$ for N2, where standard error $\sigma = 0.03$, the difference from the mirror plane is not significant. Our Rietveld analysis favours β -Si₃N₄ belonging to the space group P6₃/m.⁸ The observed and calculated intensities of the powder diffraction patterns for α -Si₃N₄ and β -Si₃N₄ are listed in Tables 3 and 4, respectively.

5 CONCLUSION

The Rietveld analysis demonstrated conclusively that the Si_3N_4 powder produced from rice husk according to the method of Rahman⁹ is a pure two-phase mixture of α -Si₃N₄ (91·7 wt%) and β -Si₃N₄ (8·3 wt%). No other impurities were detected.

^{*}Out of the observation range.

ACKNOWLEDGEMENTS

This work is supported by the Malaysian Government and Universiti Sains Malaysia under the research grants R & D No. 123-3417-2201 and No. 123-3205-2501. One of the authors (PY) would like to express his gratitude to the Universiti Sains Malaysia for the visiting post-doctoral research fellowship under the staff number USM(SAA)0143.

REFERENCES

- JACK, K. H. & WILSON, W. I., Natural Phys. Sci., 238 (1972) 28.
- WILSON, W. I., et al., Am. Ceram. Soc. Bull. (USA), V52 (1973) P373.

- 3. KATO, K., INOUE, Z., KIJIMA, K., KAWADA, I. & TANAKA, H., J. Am. Ceram. Soc., **58** (1975) 90-1.
- MARCHAND, R., LAURENT, Y. & LANG, J., Acta Cryst., B25 (1969) 2157.
- BORGEN, O. & SEIP, H. M., Acta Chem. Scand., 15 (1961) 1789.
- 6. WILD, S., GRIEVESON, P. & JACK, K. H., Spec. Ceram., 5 (1972) 385–93.
- 7. GRUN, R., Acta Cryst., B35 (1979) 800-4.
- 8. GOODMAN, P. & O'KEEFFE, M., Acta Cryst., B36 (1980) 2891-3.
- 9. RAHMAN, I. A., Ceram. Int., 20 (3) (1994) 195-99.
- 10. SAKTHIVEL, A., & YOUNG, R. A., User's Guide to Programs DBWS-9006 and DBWS-9006PC for Rietveld analysis of X-ray and neutron powder diffractions.
- 11. WILES, D. B. & YOUNG, R. A., J. Appl. Phys., 14 (1981) 149.
- ALEXANDER, L. & KLUG, H. P., Anal. Chem., 20 (1948) 886.
- 13. NARDELLI, M., Computer & Chem., 7 (1983) 95-98.