Sintering Development and Oxidation Characterization of AIYO₃-Doped Si₃N₄ Ceramic

Chih-Hung Yeh & Min-Hsiung Hon

Department of Materials Science and Engineering (MAT32), National Cheng Kung University, Tainan, Taiwan

(Received 21 December 1993; accepted 9 March 1994)

Abstract: The liquid phase sintering development and oxidation characterization of Si₃N₄ ceramic with AlYO₃ and equimolar Y₂O₃ + Al₂O₃ as sintering aids, respectively, have been studied. The apparent onset densification temperature and the shrinkage rate were recorded by dilatometer in sintering. The strength dependence and phase evolution for both AlYO₃-doped and Al₂O₃ + Y₂O₃-doped Si₃N₄ ceramics oxidized at temperature range from 700 to 1000°C for 100 h are analyzed. Specimens oxidized at 850°C for 100 h can improve the flexure strength due to the formation of an oxide products layer possibly sealing off surface pores.

1 INTRODUCTION

Because of the high degree of covalent bonding, classical sintering is not used to produce dense Si₃N₄ ceramics. As a consequence, the addition of sintering aids, such as Y_2O_3 and $Y_2O_3 + Al_2O_3^{1-5}$ to Si₃N₄ powders which react with SiO₂ (always introduced on the surface of Si₃N₄ powders during its synthesis process) and then create liquid-phase sintering assisting the densification. However, inhomogeneous mixing between separate powders $Y_2O_3 + Al_2O_3$ and Si_3N_4 always exists. The formation of liquids with different compositions and viscosities, such as Al₂O₃-rich liquid with lower viscosity enhancing local densification and Y₂O₃rich liquid with higher viscosity⁶ delaying local densification, might result in non-uniform densification and finally a non-uniform microstructure. Therefore, in order to achieve a higher homogeneity of the $Y_2O_3 + Al_2O_3$ addition within the Si_3N_4 powders, some investigators used yttrium aluminates, such as AlYO₃ and Al₅Y₃O₁₂, ⁷⁻¹⁰ as sintering aids replacing separate powders $Y_2O_3 + Al_2O_3$. Kuziukevics and Ishizaki⁷ compared the difference of Si₃N₄ sintering with AlYO₃ and equimolar mixtures of Y₂O₃ + Al₂O₃ as sintering aids. It was indicated that the AlYO3 as sintering additive for

 Si_3N_4 has a better densification capability than $Y_2O_3 + Al_2O_3$ at temperatures above 1700°C, and suggested that is due to the heterogeneity of liquid phase formation in the case of using $Y_2O_3 + Al_2O_3$ as sintering aid. However, they did not investigate the development of densification behaviors in $AlyO_3$ -doped Si_3N_3 systems.

In an attempt to intensively compare the development of liquid-phase sintering behavior of Si_3N_4 ceramics with $AlYO_3$ and separated powder mixtures $Al_2O_3 + Y_2O_3$ as sintering aids, this work observes their densification shrinkage profiles, not only in pressureless sintering, but also in hot pressed sintering by dilatometer. Also, the mechanical properties and phase development in oxidation are also discussed in terms of additive compositions.

2 EXPERIMENTAL PROCEDURE

Yttrium aluminate (AlYO₃) was prepared from the powder mixtures of Al_2O_3 (99.99%, AKP-50, Sumitomo Co. Ltd., Japan) and Y_2O_3 (99.9%, Research Chemicals, USA) of molar ratio $Al_2O_3/Y_2O_3 = 1/1$ calcined at 1600°C for 4 h and then crushed. The resultant powder was calcined again at 1700°C for 2 h and then crushed and

182 C.-H. Yeh, M.-H. Hon

Specimen series		Compo	Sintering condition				
		wt(Temperature (°C)	Furnace	Time (h)
	Si₃N₄	Al ₂ O ₃	Y_2O_3	AIYO ₃			
PR10	90	3.11	6.89	_	1750	PLS	2
HPR10	90	3.11	6.89		1750	HP	1
PC10	90	_	_	10	1750	PLS	2
HPC10	90			10	1750	HP	1
PR6	94	1.87	4-13		1750	PLS	2
PC6	94			6	1750	PLS	2

PLS: pressureless sintering; HP: hot-press sintering.

ball-milled to control its average particle size to within 5 μ m. Complete reaction was confirmed by X-ray analysis. Si₃N₄ powder (SN-E10, particle size $0.3 \mu m$, specific surface area $11.2 \text{ m}^2/\text{g}$, alpha content 95 wt%, UBE Chemical Co. Ltd., Japan) was mixed with 6 and 10 wt% of additives for the Al₂O₃-Y₂O₃ and AlYO₃ systems, respectively (Table 1), in ethanol by ball-milling for 24 h, using silicon nitride media. The slurry was dried by vacuum filter drying to eliminate solvent, then placed in an oven at 90°C for 24 h. The obtained powder was crushed and sieved through 80-mesh screen, then uniaxially pressed at a pressure of 20 MPa to make pellets of 15 mm diameter and 3 mm height and $55 \times 5 \times 4$ mm bars. The compacts were cold isostatically pressed at 250 MPa for 1 min. The as-cipped specimens were pressureless sintered at 1750°C for 2 h in 1 atm N₂ (high purity grade) using a graphite furnace. In order to prevent decomposition of Si₃N₄ in the sintering process, the green compacts were embedded in a powder bed with compositions of 60 wt% (Si₃N₄ + additives)-40 wt%BN. Shrinkage profiles in sintering were determined using a high temperature dilatometer (DHT 2050 type, Setaram, France). Hot pressed sintering was performed using a graphite furnace (FVPHP-R-5, Fujidempa, Japan) in 1 atm flowing N₂ at 1750°C for 1 h with a pressure of 25 MPa. The hot pressing variables, such as time, temperature, pressure, and ram displacement, were recorded. Density of the sintered specimens was measured using the water immersion method. The oxidation was carried out in air temperatures from 700 to 1000°C for 100 h. Flexural strength measurement was performed using a three-point bending method with a span of 30 mm and a crosshead speed of 0.5 mm/min. The Vickers hardness and fracture toughness were measured by the Vickers indentation method with a load of 50 kg. The phase identification was determined by powder X-ray diffraction analysis (XD-D1. Shimadzu, Japan). The scanning electron

microscope (JSM-5200, JEOL, Japan) was employed for the morphological examination of the fracture and etched surface.

3 RESULTS AND DISCUSSION

3.1 Sintering development

Figure 1 shows the densification shrinkage profiles of pressureless-sintered Si₃N₄ as a function of temperature and additive compositions. The apparent onset densification temperature (T_s) is obtained from the shrinkage curves at 1330°C and 1390°C for specimens PR10 and PC10 (Table 1), respectively, which is attributed to the formation of an eutectic melt causing the viscous flow and then providing the driving force for particle rearrangement. The difference of T_s values between specimens PR10 and PC10 can be explained by referring to the possible eutectic formation temperature in SiO₂-Al₂O-Y₂O₃-Si₃N₄ liquid which is lower than that in SiO₂-AlYO₃-Si₃N₄ liquid. The eutectic temperature in Y₂O₃-Al₂O₃-SiO₂ triangle is at 1345°C.11 Apparently, it is near to onset densification temperature, T_s , in Al₂O₃ + Y₂O₃-doped

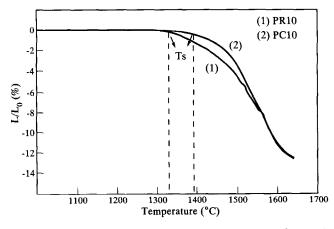


Fig. 1. Shrinkage dependence on heated temperature for specimens PR10 (10 wt% $Al_2O_3 + Y_2O_3$ addition) and PC10 (10 wt% $AlYO_3$ addition).

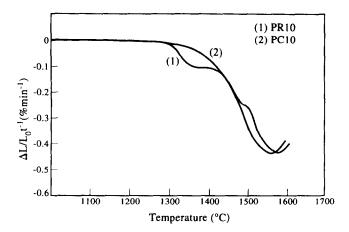


Fig. 2. Shrinkage rate curves of specimens PR10 and PC10.

Si₃N₄ systems. AlYO₃ is stable in the temperature range from 1820°C to 1900°C, ¹² however, the possible decomposition and reaction with SiO₂ at sintering temperature are still not clear.

The temperature dependence of shrinkage rate, $(\Delta L/L_0)t^{-1}$, in Fig. 2 shows that the maximum shrinkage rate occurs at 1560°C and 1580°C for specimens PC10 and PR10, respectively. Also, Si₃N₄ with AlYO₃ additive, for PC10 specimen, was densified with a faster rate than the one with Al₂O₃ + Y₂O₃ mixtures, PR10 specimen at temperature above 1460°C. For liquid phase sintering, the densification during rearrangement and solution-diffusion-reprecipitation are closely related to the viscosity of the liquid phase. In general, the decreased viscosity of the liquid phase during sintering will promote the densification (i.e. increasing shrinkage rate). 13,14 As a consequence, the enhanced shrinkage rate for specimen PC10 may be due to the decreased viscosity of the liquid and then accelerates the rearrangement and solution-diffusion-reprecipitation mechanisms for densification.

Figure 3 shows the shrinkage curves of hotpress sintered Si_3N_4 as a function of temperature and additive compositions. The T_s is observed at 1315°C for specimen HPR10, higher than that for specimen HPC10 (1370°C). Also, the T_s of all the specimens with the same composition in hot-press sintering are lower than that in pressureless sintering.

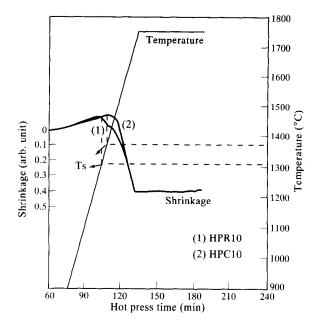


Fig. 3. Heating temperature and specimens shrinkage in hotpressing.

This is due to the external stress provided from mechanical pressing in hot-press sintering which promotes the particle rearrangement. Obviously, the densification rate, namely the slope of shrinkage curves vs sintering time, for specimen HPC10 is faster than that of specimen HPR10 at temperatures above 1450°C giving the same results as listed of pressureless sintering.

Table 2 summarizes the results of relative density and room temperature mechanical properties of sintered Si₃N₄. The dependence of relative density and mechanical properties is associated with the amount and compositions of additives, as well as sintering conditions. In the case of Si₃N₄ with 10 wt% AlYO3 addition, specimens PC10 and HPC10 obtained higher relative density, flexure strength and Vickers hardness than specimens PR10 and PC10 with 10 wt% equimolar Al₂O₃ + Y₂O₃ mixture added. To compare the specimens containing 10 wt% and 6 wt% additives, specimens PR6 and PC6 exhibit poor sinterability and mechanical properties. Also, among specimens PR6 and PC6, the latter still obtains a higher relative density.

Table 2. The summarized results of relative density and room temperature mechanical properties of sintered Si₃N₄

Specimen series	Relative density (%)	β(Si ₃ N ₄) α(Si ₃ N ₄) (%)	σ (MPa)	<i>Hv</i> (GPa)	Κ _{IC} (MPa m ^{1/2})
PR10	97.1	98	749±64	14·9±0·4	7.7
PC10	98.2	99	813±32	15.0±0.7	7.3
PR6	93.4	_	693±63	12·1 ± 1·2	6.9
PC6	94.3	_	661±59	13·0±08	6.3
HPR10	99.8	_	940 ± 42	15.9±02	5.5
HPC10	99.9		1052±37	16.3±02	5.4

184 C.-H. Yeh, M.-H. Hon

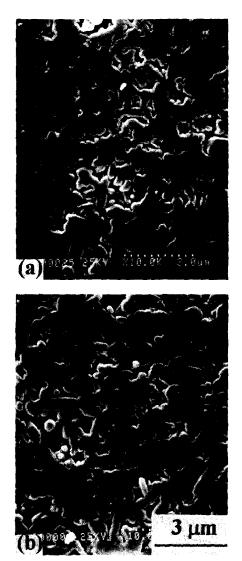


Fig. 4. Typical microstructures of specimens (a) PC10 and (b) PR10 etched in a molten alkali hydroxide with a composition of NaOH: KOH = 1:1 at 450°C for 10-15 s.

The SEM micrographs of the etched surface of specimens PC10 and PR10, illustrated in Fig. 4, indicated that the microstructural development of β -Si₃N₄ in both specimens is similar. An average grain size of approximately 0.5 μ m in width and 2-3 μ m in length is estimated in these specimens using the quantitative microstructural characterization method.¹¹

3.2 Characterization of oxidized Si₃N₄ ceramics

Figure 5 is an XRD study of the phase evolution of specimens PC10 and PR10 before and after oxidation at 1000° C for 100 h. Both specimens (PC10 and PR10) contain β -Si₃N₄ and YSiO₂N₂ crystalline phases. The oxidized surface of PC10 consists of β -Si₃N₄, remnant YSiO₂N₂ and oxidation products, α -Y₂Si₂O₇ and β -cristobalite. With different results to specimen PC10, the oxidized surface of specimen PR10 mainly includes β -Si₃N₄ and YSiO₂N₂ and only minor β -cristobalite and

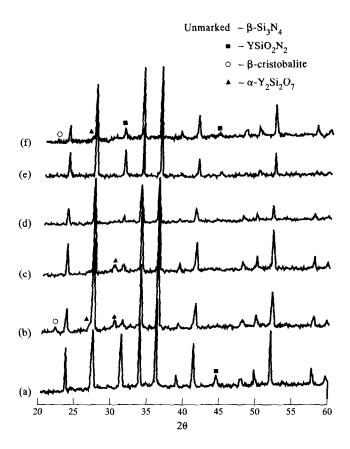


Fig. 5. X-Ray diffraction patterns of $\mathrm{Si_3N_4}$ ceramics with 10 wt% additives added before and after oxidation at 1000°C for 100 h. (a) PC10 unoxidized, (b) PC10 oxidized, (c) with a layer of 2 \times 10⁻² mm in thickness ground off, and (d) with a layer 4 \times 10⁻² mm in thickness ground off, (e) PR10 unoxidized, and (f) PR10 oxidized.

α-Y₂Si₂O₇ diffraction peaks can be detected. As the oxidized surface of specimen PC10 is ground out, layers with thickness of 2×10^{-2} mm and $4 \times$ 10^{-2} mm, respectively, the β -cristobalite and α -Y₂Si₂O₇ diffraction peaks disappear. Figure 6 is the XRD of specimens PR6 and PC6 before and after oxidation at 1000°C for 100 h. Owing to the decrease of additives added, the crystalline phase only consists of β-Si₃N₄ for both specimens PR6 and PC6. The β -cristobalite is detected only in the oxidized surface of specimen PC6, but not in specimen PR6. Some studies^{15,16} have reported that the rate-determining step of Si₃N₄ ceramic oxidation is the diffusion-controlled mechanism. The XRD results seem to suggest that the presence of high diffusion path in AlYO3-doped Si3N4 system would enhance the reaction of oxygen with Si₃N₄ ceramics on the basis of the diffusion-controlled model.

The influence of oxidation on the strength of specimens PR10 and PC10 (Fig. 7) shows a dramatic increase in the flexure strength after oxidation at 850°C for 100 h, which may be caused by an elimination of surface defects. Because the strength of Si₃N₄ ceramics is highly sensitive to surface defects and microcracks, the formation of

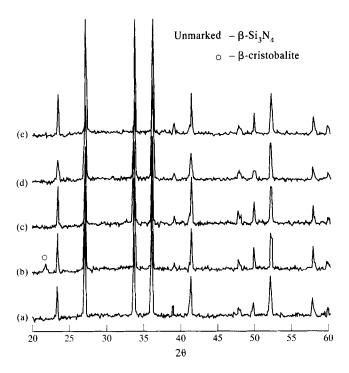


Fig. 6. X-Ray diffraction patterns of Si_3N_4 ceramics with 6 wt% additives added before and after oxidation at 1000°C for 100 h. (a) PC6 (AlYO₃ addition) unoxidized, (b) PC6 oxidized, (c) with a layer of 2×10^{-2} mm in thickness ground off, (d) PR6 (Al₂O₃ + Y₂O₃ addition) unoxidized, and (e) PR6 oxidized.



Fig. 7. Effect of oxidation temperature on the bending strength of specimens PC10 and PR10.

a thin oxide layer, resulting in the elimination of defects and blunting of microcracks, gives a positive effect on strength. The morphological examination of specimen PC10 heated at 850°C for 100 h (Fig. 8) shows that the oxidized surface is smooth and some surface pores are sealed and blunted, which provides an explanation of the strength increase after oxidation.

Figure 9 is the SEM morphology of specimen PC10 oxidized at 1000° C for 100 h. Observation of the cross-section near the oxidized surface shows that the oxide layer formed on the surface of the specimen is $2-3~\mu m$ thick. The results of XRD show that the oxidation at 1000° C induces

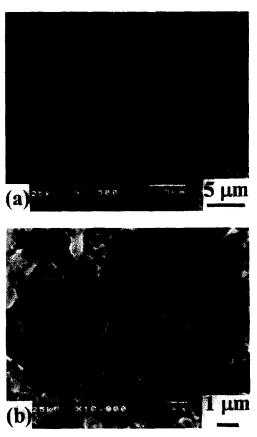


Fig. 8. SEM micrographs of oxidized surface of specimen PC10 heated at 850°C for 100 h. (a) 3.5 K, (b) 10 K.

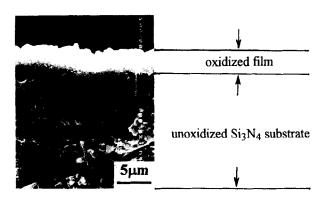


Fig. 9. SEM micrograph of the cross-section near the oxidized surface of specimen PC10 heated at 1000°C for 100 h.

the formation of yttrium silicate, α -Y₂Si₂O₇, by the following equation

$$YSiO_2N_2 + 0.75 O_2 \rightarrow 0.5 Y_2Si_2O_7 + N_2$$

The difference of specific molar volume between $Y_2Si_2O_7$ and $YSiO_2N_2$ leads to a 10% specific volume change, 17 which creates a build-up of stresses and gives a negative effect on strength. Therefore, after exposure at 1000°C, the strength decreases to the level of the unoxidized specimen.

4 CONCLUSION

The development and characterization of oxidized Si_3N_4 ceramics sintered with $AlYO_3$ and Y_2O_3 +

186 C.-H. Yeh, M.-H. Hon

 Al_2O_3 additions have been investigated. It shows that the apparent onset densification temperature for $Y_2O_3 + Al_2O_3$ -doped Si_3N_4 ceramics is lower than that of $AlYO_3$ -doped Si_3N_4 ceramics, not only in pressureless sintering but also in hot-press sintering. The densification rate for $AlYO_3$ -doped Si_3N_4 ceramic is faster than that of $Y_2O_3 + Al_2O_3$ -doped Si_3N_4 ceramic temperatures above $1460^{\circ}C$. Specimens oxidized at $850^{\circ}C$ for 100 h can improve the flexure strength due to the formation of an oxide layer, possibly sealing off the pores on the specimen surface.

REFERENCES

- HAYASHI, T. & MUNAKATA, H., Pressureless sintering of Si₃N₄ with Al₂O₃ and Y₂O₃. J. Mater. Sci., 21 (1986) 3501-8.
- 2. LOEHMAN, R. E. & ROWCLIFFE, D. J., Sintering of Si₃N₄-Y₂O₃-Al₂O₃. J. Am. Ceram. Soc., **63** (1980) 144-8.
- ABE, O., Sintering process of Y₂O₃ and Al₂O₃-doped Si₃N₄. J. Mater. Sci., 25 (1990) 4018-26.
- QUACKENBUSH, C. L. & SMITH, J. T., Phase effect in Si₃N₄ containing Y₂O₃ or CeO₂: II Oxidation. Ceram. Bull. (ACers), 59 (1980) 533-7.
- 5. TSUGE, A. & NISHIDA, K., High-strength hot-pressed Si₃N₄ with concurrent Y₂O₃ and Al₂O₃ additions. *Ceram. Bull. (ACers)*, **56** (1978) 424-6, 431.
- ZIEGLER, G., HEINRICH, J. & WOTTING, G., Relationship between properties of dense and reaction-bonded silicon nitride. J. Mater. Sci., 22 (1987) 3041–86.
- 7. KUZJUKEVICS, A. & ISHIZAKI, K., Sintering of sili-

- con nitride with YAlO₃ additive. *J. Am. Ceram. Soc.*, **76** (1993) 2373-5.
- KIM, J., SCHUBERT, H. & PETZOW, C., Sintering of Si₃N₄ with Y₂O₃ and Al₂O₃ added by coprecipitation. J. Eur. Ceram. Soc., 5 (1989) 311-9.
- LI, W. L., ZHUNG, H. R., FU, X. R. & YEN, T. S., Gas pressure sintering of RBSN with YAG addition. In Ceramic Materials and Components for Engines, ed. V. J. Tennery. Am. Ceram. Soc. Inc., 1988, pp. 409-18.
- TIEGS, T., Silicon carbide-whisker-reinforced SIALON composites: Effect of sintering aid content. *Ceram. Engng* Sci. Proc., 10 (1989) 101-7.
- WOTTING, G., KANKA, B. & ZIEGLER, G., Microstructure development, microstructural characterization and relation to mechanical properties of dense silicon nitride. In *Non-Oxide Technical and Engineering Ceramics*, ed. S. Hampshire. Elsevier, London, 1986, pp. 83-96.
- LEVIN, E. M., ROBBINS, C. R. & McMURDIE, H. F., Phase Diagrams for Ceramists, ed. M. K. Reser. Am. Ceram. Soc., 1975.
- 13. SARIN, V. K., On the α to β -phase transformation in silicon nitride. *Mater. Sci. Engng*, **A105/106** (1988) 151–9.
- PROKESOVA, M. & PANEK, Z., Particle rearrangement during liquid phase sintering of silicon nitride. Ceram. Int., 15 (1989) 369-74.
- SINGHALI, S. C., Thermodynamics and kinetics of oxidation of hot-pressed silicon nitride. J. Mater. Sci., 11 (1976) 500-9.
- LEWIS, M. H. & BARNARD, P., Oxidation mechanisms in Si-Al-O-N ceramics. J. Mater. Sci., 15 (1980) 443-8.
- PATEL, J. K. & THOMPSON, D. P., Further studies of the low-temperature oxidation problem in yttria-densified silicon nitride ceramics. In *Ceramic Materials and Com*ponents for Engines, ed. V. J. Tennery. Am. Ceram. Soc. Inc., 1988, pp. 987-96.