Densification of Alumina at 1250°C with MnO₂ and TiO₂ Additives

Hilkat Erkalfa, Zülal Misirli & Tarik Baykara

TUBITAK, Marmara Research Center, Gebze 41470, Turkey

(Received 25 October 1994; accepted 8 February 1995)

Abstract: The effects of MnO_2 and TiO_2 additions in 3 wt% MnO_2 + (0.5, 1.5, 3.0) wt% TiO_2 additive combinations on the sintering of α -Al₂O₃ have been investigated. The microstructural development along with the microhardness has been characterized. The Al₂O₃ + 3 wt% MnO_2 + 0.5 wt% TiO_2 system resulted in high densification (98% of the theoretical density) giving a uniform grained microstructure and yielding a hardness value of 23.14 GPa at a sintering temperature as low as 1250°C.

1 INTRODUCTION

Sintering of alumina ceramics at relatively low temperatures to obtain dense and fine grained microstructures with sufficient mechanical properties is one of the targets of technological investigations.

The investigations of the influence of MnO₂ and TiO₂ on the sintering behavior of alumina started many years ago. Earlier investigations on the sintering of TiO₂ doped Al₂O₃ showed that there was no indication of a solid solution of TiO₂ in Al₂O₃ when sintered in air. The densification was due to the enhanced grain growth along the grain boundaries. The sintering rate of alumina gradually increased when titania was added up to a certain percent, beyond which the rate leveled off or decreased at a rate due to the formation of a second phase which was found to inhibit the densification.² In another study,³ precipitation in rod or needle-like shapes was observed at the triple junctions, at the grain boundaries and within the matrix, which resulted in increased hardness. In another study, it was shown that the addition of TiO₂ promoted aluminium ion diffusion by a vacancy diffusion mechanism.4

The influence of MnO₂ was found to be similar to the effect of TiO₂. The sintering rate increases to a maximum level and then decreases as the Mn concentration exceeds the 0·3 wt% level due to the formation of a second phase. It was proposed that

the addition of MnO₂ led to a change in the diffusion mechanism from a grain boundary process to a bulk diffusion process.^{5,6}

In this study, the effects of TiO₂ and MnO₂ and the combination of TiO₂ and MnO₂ addition on the sintering characteristics and on the mechanical properties of alumina were investigated.

2 EXPERIMENTAL PROCEDURE

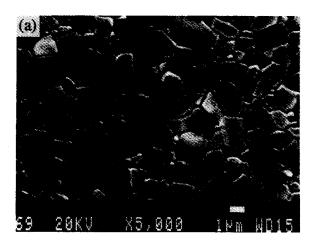
Alcoa A16 SG alumina powder with an average partical size of 0.37 µm and reagent grade Mn(CH₃COO)₂· 4H₂O and TiC₃ were used as the starting materials. Alumina suspensions of 50 vol% Al₂O₃ were prepared in water solutions of manganese (2) acetate and titanium (3) chloride at pH 2 adjusted with HCl, and slowly added into the solution while stirring and ultrasonicating to break up the agglomerates. The obtained suspensions were dried at 110°C. During this operation the suspensions were mixed regularly to prevent sedimentation. The dried powders were then calcined at 600°C for one hour in order to obtain additive oxides and pressed to disk shaped samples. These pressed samples were sintered to 1250, 1350, 1450 and 1550°C for one hour, employing 10°C/min as the heating and cooling rates. The compositions of the samples are given in Table 1.

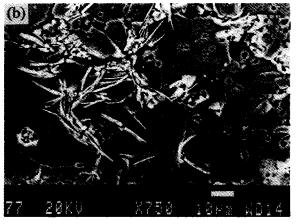
The sintered densities of the samples were measured by the water immersion technique. Vickers

microhardness was measured on the polished samples using a Leitz Mini Load Hardness Tester at a load of 300 g and an average of 10 indentations

Table 1. Compositions of the Al₂O₃ samples

No.	% MnO ₂ added	% TiO ₂ added		
0	_			
1	3.0	_		
2	_	3.0		
3	3.0	0.5		
4	3.0	1.5		
5	3.0	3⋅0		


per specimen. The results are given in Table 2. The polished samples were thermally etched at 100°C below the sintering temperature. They were then coated firstly with carbon (~250 Å) and later with gold (~300 Å) for the SEM study, equipped with the Energy Dispersive X-Ray Spectrometer (EDS) facility (Figs 1–3).


3 RESULTS AND DISCUSSION

The densities of the undoped samples decreased from 68 to 95% of the theoretical density with the increased sintering temperatures employed in this

Table 2. Theoretical densities π (%) and Vickers microhardness $V_{\rm H}$ (GPa) of the samples

No.	1550°C π	1550°С <i>V</i> н	1450°C π	1450°C <i>V</i> _H	1350°C π	1350°C <i>V</i> _H	1250°C π	12540°C <i>V</i> н
0 95.0	95.0	22.55	89.9	20.59	77.1	18-24	68.7	
		±1.92		±1.27		±1.57		
1	98.7	24.81	96⋅2	21.47	86⋅3	19-22	73.0	_
		±2.68		±2·11		±2.04		
2	97⋅5	23.14	95.2	21.77	95.0	23.43	81⋅1	
		±3.68		±1.40		±3.01		
3	98.5	18-23	98.5	19.51	98-2	23-82	98.2	23-14
		±1.82		±1.37		±2.21		±1.47
4	95.9	95.9 24.81 98.2	98-2	22.26	98-2	21.86	94.4	22.06
		±2·47		±2.36		±1.46		±0.93
5 95.2	95.2	26.77	95⋅0	20.39	98-5	22.35	98.2	21.57
		±2.07		±2.06		±2.01		±2.50

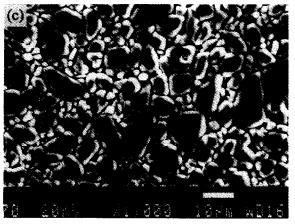


Fig. 1. SEM micrographs of (a) undoped, (b) Mn-doped and (c) Ti-doped alumina, sintered at 1550°C.

Densification of alumina 347

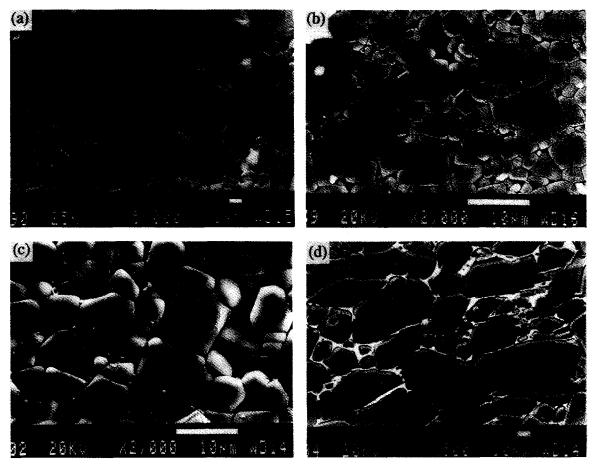


Fig. 2. The microstructures of $Al_2O_3 + 3$ wt% $MnO_2 + 1.5$ wt% TiO_2 samples sintered at (a) 1250°C, (b) 1350°C, (c) 1450°C and (d) 1550°C.

study. The densities of the 3 wt% MnO₂ doped alumina increased from 73 to 98·7% of the TD. This shows that MnO₂ results in a favorable effect in the densification process. The 3 wt% TiO₂ doped samples also showed a similar effect, but at lower sintering temperatures, therefore TiO₂ addition was more effective than MnO₂ addition. The densities of the MnO₂ and TiO₂ doped alumina samples

ranged approximately between 95 and 98% of the TD. However the 0.5 wt% TiO₂ and 3 wt% MnO₂ doped samples have showed ~98.5% densification level in all sintering conditions employed. The densification of the alumina decreased with the increasing amount of the TiO₂ additive and sintering temperature, due to the formation of a second solid phase and liquid phase. Therefore, the

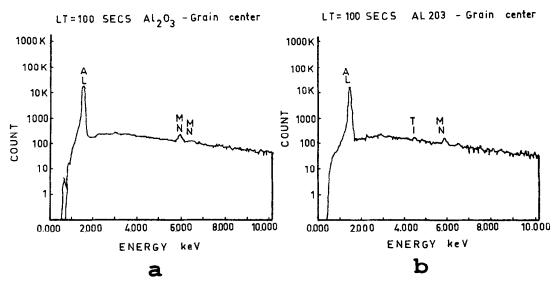


Fig. 3. EDX-point analysis of (a) 3 wt% MnO₂ and (b) 3 wt% MnO₂ + 3 wt% TiO₂, added to Al₂O₃.

addition level of 0.5 wt% TiO₂ to the 3 wt% MnO₂ doped alumina was found to be sufficient to achieve the 98.2% TD value at 1250°C. The microhardness values showed high standard deviation because of the different levels of porosity, grain size and secondary phase distribution in the samples. The hardness increased with increasing sintering temperature in the pure alumina and MnO₂ and TiO₂ doped samples. Overall, the TiO₂ + MnO₂ doped alumina samples gave higher hardness values at the same sintering temperature due to precipitation hardening. Similar results were also observed in other ternary systems.⁷

According to the SEM micrographs of the samples (shown in Figs 1 and 2), the effect of the single additions was more evident on grain growth when compared with the undoped samples (Fig. 1). In the samples having 3 wt% MnO₂ and 3 wt% TiO₂, the grain size increased up to 13 and 7 μ m, respectively, with increased sintering temperature. The EDX-point analysis from the centers of large grains (Fig. 3) indicates that MnO₂ formed a solid solution with alumina. MnO₂ doped samples gave exaggerated grain growth with a high amount of closed pores when sintered at 1550°C. The draining of the second phase and needle-like appearance of the phases at the grain boundaries indicate that precipitation occurred at this temperature. An observation of the formation of a second phase between the grains was reported in the case of the 0.5-1.5 wt% MnO₂ doped alumina which was attributed to the limited solid solubility of MnO₂.8

In the TiO₂ doped samples, the segregation of TiO₂ was also observed at the grain boundaries of Al₂O₃, giving various morphologies at different sintering temperatures. This segregation resulted in porosity between the small and large grains. As shown in Fig. 2(d) the excess addition of TiO₂ to the Al₂O₃ + 3 wt% MnO₂ system increased the formation of the second phase or the glassy phase, which resulted in the increment of intergranular pores. The formation of the needle-like second

phase was also observed in the 3wt% $MnO_2 + 0.5$ wt% TiO_2 samples sintered at 1450°C and 1550°C. When TiO_2 was increased up to 1.5 wt% the grains became rounded and a large number of pores were formed during sintering at 1350°C and 1450°C.

The microstructure of the 3 wt% MnO₂ + 3 wt% TiO₂ doped alumina showed an exaggerated grain growth having glassy phase pockets along grain boundaries and also in grain junctions.

4 CONCLUSIONS

The sintering rate of alumina powder compacts increased when 0.5-1.5 wt% titania was added to the $Al_2O_3 + 3$ wt% MnO_2 system, which promoted grain growth and lowered the sintering temperature. A high densification, up to 98.2% TD, was achieved at 1250° C resulting in a microhardness value of 23.14 GPa.

ACKNOWLEDGEMENT

The authors acknowledge the financial support of NATO-SFS Programme for this study.

REFERENCES

- McKEE, W. D. & ALESHIN, E., J. Amer. Ceram. Soc., 46(1) (1963) 54.
- BAGLEY R. D., CUTLER, I. B. & JOHNSON, D. L., J. Amer. Ceram. Soc., 53(3) (1970) 136.
- 3. LANGENSIEPEN, R. A., TRESSLER, R. E. & HOWELL, P. R., J. Mater. Sci., 18 (1983) 2771.
- 4. HARMER, M., ROBERTS, E. W. & BROOK, R. J., Trans. Brit. Ceram. Soc., 18(1) (1979) 22.
- KESKI, J. R. & CUTLER, I. B., J. Amer. Ceram. Soc., 48(12) (1965) 653.
- 6. KÈSKÌ, J. Ř. & CUTLER, I. B., J. Amer. Ceram. Soc., 51(8) (1968) 440.
- BELON, L., FORESTIER, H. & BIGOT, Y., Special Ceramics 4, ed. P. Popper. The British Ceramic Association, 1968, p. 203.
- ERKALFA, H., MISIRLI, Z., BAYKARA, T., DOGAN, F. & AKSAY, I. A., Third Euro-Ceramics. Faenza Editrice, 1968, p. 549.