Hot Isostatic Pressing of SiC/Si₃N₄ Composite with Rare Earth Oxide Additions

Dong Shaoming, Jiang Dongliang, Tan Shouhong & Guo Jingkun

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

(Received 2 January 1995; accepted 2 February 1995)

Abstract: SiC/Si₃N₄ composites with rare earth oxide additions have been prepared by glass encapsulated hot isostatic pressing at 1850°C and 200 MPa pressure. Mechanical properties and microstructures of the sintered samples have been studied. It is shown that different molar ratios of La₂O₃ to Y₂O₃ and the total amount of La₂O₃ and Y₂O₃ additions can affect the mechanical properties significantly. With 3 wt% La₂O₃ + Y₂O₃ additions, lower La₂O₃/Y₂O₃ molar ratio exhibits higher bending strength and median fracture toughness, but relatively lower Vickers hardness. For addition of 6 wt% La₂O₃ + Y₂O₃, the higher bending strength, Vickers hardness and fracture toughness correspond to a certain La₂O₃/Y₂O₃ molar ratio of 1·5, 1·0 and 0·5, respectively. SEM observation shows that the SiC matrix composite with fine grain size and homogeneous microstructure can be obtained.

1 INTRODUCTION

Silicon carbide (SiC) and silicon nitride (Si₃N₄) are important structural materials for high temperature applications because of their excellent mechanical properties. 1-3 Incorporating a second phase to the matrix is a very attractive design concept to improve the mechanical properties of the composite.^{4,5} However, due to the high degree of covalent bonding and low self diffusivity of SiC and Si₃N₄, densification of the monolithic ceramics and their composite is difficult. Many works have been done to achieve fully densified samples through the addition of metal oxide as sintering aid.6-10 The additives are effective to promote densification controlled by the mechanism of liquid phase sintering at elevated temperature. But the problems for this process are that the liquid phase can exist in grain boundaries so that it can deteriorate the high temperature properties. To strengthen the grain boundary structure of SiC, Si₃N₄ and their composites, many efforts have been devoted to decreasing the amount of sintering aids or using rare earth oxide additives. 11,12 Meanwhile, hot isostatic pressing is also an effective sintering technique for preparing fully

densified ceramics by using less or no sintering additives. 13,14

In this study, the mechanical properties of HIPed SiC-25 vol% Si_3N_4 composite containing La_2O_3 and Y_2O_3 additives have been determined. The effects of rare earth oxide additions on densification process and microstructure development, and the relationship between microstructural features and mechanical properties are discussed.

2 EXPERIMENTAL PROCEDURE

The starting materials used in this experiment were α-SiC (FCP-15), α-Si₃N₄ (UBE-SN10), La₂O₃ (99.95% pure) and Y₂O₃ (99.95% pure). The average particle sizes of SiC and Si₃N₄ were 0.6 and 0.7 μm, respectively. The SiC-25 vol% Si₃N₄ powders and the additives were mixed with ethanol in a polyethylene ball mill for 24 h. The additions of La₂O₃ and Y₂O₃ were 3 and 6 wt%, and the La₂O₃/Y₂O₃ molar ratio was changed from 0.5 to 2.0. The powder mixture was uniaxially pressed and cold isostatically pressed. Powder compacts were subsequently dewaxed, glass encapsulated, and then HIPed at 1850°C under 200 MPa pressure. The HIPed samples were machined into

4 mm*3 mm*36 mm bars for measuring three point bending strength carried out in 1195 Instron testing machine. The span length and the cross head speed were 30 mm and 0.5 mm/min, respectively. Bulk density of the sintered specimens was measured by the Archimedes method. Hardness and fracture toughness were estimated through Vickers indentation experiments in a Akashi (AVK-A) test machine. During the experiment, the indentation load was 10 kg (98N), and the loading time, 15 s.

X-ray diffraction was used to determine the phase composition after HIPing. Microstructures were observed by scanning electron microscopy (SEM) on fracture surfaces of the bending test specimens.

3 RESULTS AND DISCUSSION

3.1 Microstructures

Figure 1 (A) to (D) shows the X-ray diffraction for SiC-25 vol% Si_3N_4 composite containing 3 wt% Y_2O_3 and La_2O_3 as sintering additives. As the

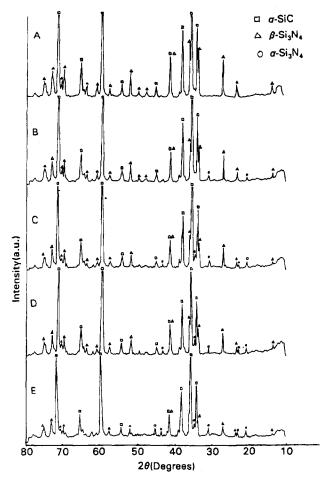


Fig. 1. X-ray diffraction patterns of SiC-25 vol% Si_3N_4 with (A) $La_2O_3/Y_2O_3=0.5$, $La_2O_3+Y_2O_3=3$ wt%, (B) $La_2O_3/Y_2O_3=1.0$, $La_2O_3+Y_2O_3=3$ wt%, (C) $La_2O_3/Y_2O_3=1.5$, $La_2O_3+Y_2O_3=3$ wt%, (D) $La_2O_3/Y_2O_3=2.0$, $La_2O_3+Y_2O_3=3$ wt%, (E) $La_2O_3/Y_2O_3=1.5$, $La_2O_3+Y_2O_3=6$ wt%.

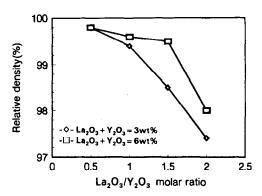


Fig. 2. Relative density as a function of La₂O₃/Y₂O₃ molar ratio.

La₂O₃/Y₂O₃ molar ratio changed from 0.5 to 2.0, the α -Si₃N₄ appeared in the sintered samples, and X-ray intensity of β -Si₃N₄ decreased while that of α -Si₃N₄ increased. Addition of 3 and 6 wt% La₂O₃ + Y_2O_3 at $La_2O_3/Y_2O_3 = 1.5$ exhibits the same trend of variation, as shown in Fig. 1(C) and (E). These changes indicate that the transformation of α -Si₃N₄ to β -Si₃N₄ was inhibited by increasing La₂O₃ addition. Figure 2 shows the relationship between relative density and La₂O₃/Y₂O₃ molar ratio. When the amount of Y_2O_3 addition is larger, the relative density is higher. Meanwhile, 6 wt% $La_2O_3 + Y_2O_3$ additions give the higher density of the sintered samples. These results suggest that Y_2O_3 is effective to promote the densification of the composite.

Figure 3 gives the SEM micrographs of fracture surface of the composite with 3 wt% La_2O_3 + Y_2O_3 additions. It is clearly shown that the fine grain size and homogeneous microstructure can be obtained in the present experimental conditions. For 3 wt% La_2O_3 + Y_2O_3 additions, higher Y_2O_3 content such as $La_2O_3/Y_2O_3 = 0.5$ exhibit the dense compact structure, while the lower Y_2O_3 content such as $La_2O_3/Y_2O_3 = 2.0$ gives the loose microstructure. This is consistent with the above mentioned results. The fracture patterns obviously show that the fracture path is along the grain boundaries.

3.2 Mechanical properties

Bending strength as a function of $\text{La}_2\text{O}_3/\text{Y}_2\text{O}_3$ molar ratio is shown in Fig. 4. Addition of 3 wt% $\text{La}_2\text{O}_3 + \text{Y}_2\text{O}_3$, maximum bending strength of 810 MPa was reached at the $\text{La}_2\text{O}_3/\text{Y}_2\text{O}_3 = 0.5$. When $\text{La}_2\text{O}_3/\text{Y}_2\text{O}_3$ increased, the bending strength decreased to a lower value of 580 MPa at $\text{La}_2\text{O}_3/\text{Y}_2\text{O}_3 = 2.0$. While adding 6 wt% $\text{La}_2\text{O}_3 + \text{Y}_2\text{O}_3$, no obvious variation of bending strength occurred as the $\text{La}_2\text{O}_3/\text{Y}_2\text{O}_3$ molar ratio changed. Maximum bending strength of 660 MPa was

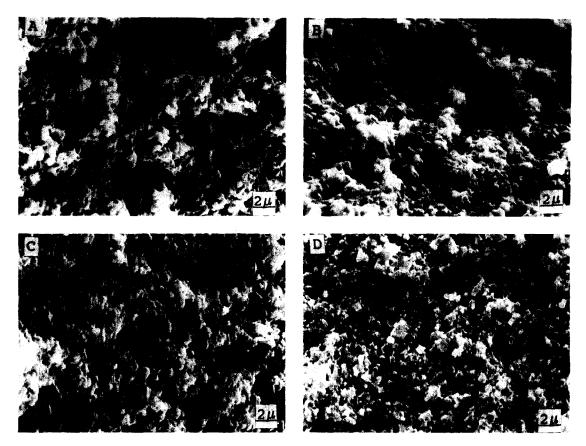


Fig. 3. SEM micrographs showing fracture surface of the composite with 3 wt% $La_2O_3 + Y_2O_3$ additions, (A) $La_2O_3/Y_2O_3 = 0.5$, (B) $La_2O_3/Y_2O_3 = 1.0$, (C) $La_2O_3/Y_2O_3 = 1.5$, (D) $La_2O_3/Y_2O_3 = 2.0$.

obtained at $La_2O_3/Y_2O_3 = 1.5$. As mentioned in the previous section, the fracture path was along the boundary of fine grains, so that the strength was mainly affected by the bonding strength of the grain boundary phase. When $La_2O_3 + Y_2O_3$ additions were 3 and 6 wt%, the lower densities at $La_2O_3/Y_2O_3 = 2.0$ correspond to the weak bonding of grains. At $La_2O_3/Y_2O_3 = 0.5$, the higher densities imply that the fine grains bonding together closely, and at this time, the small amount of addition of sintering aids such as $La_2O_3 + Y_2O_3 = 3$ wt% may produce less amorphous phase to strengthen the grain boundaries. Compared with the above case, for 6 wt% of

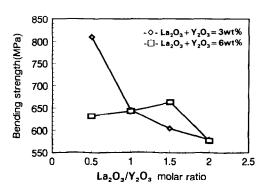


Fig. 4. Bending strength as a function of La₂O₃/Y₂O₃ molar

 $\text{La}_2\text{O}_3/\text{Y}_2\text{O}_3$ additions, relatively larger amount of amorphous phase may occur at grain boundaries to weaken the bonding strength of grains. In this case, as $\text{La}_2\text{O}_3/\text{Y}_2\text{O}_3$ increased, much La_2O_3 was melted into grain boundaries to form a high viscosity amorphous phase which may strengthen the grains bonding. At $\text{La}_2\text{O}_3/\text{Y}_2\text{O}_3 = 1.5$, it reaches the highest bending strength value of 660 MPa. When $\text{La}_2\text{O}_3/\text{Y}_2\text{O}_3$ increased to 2, density as mentioned before may become the dominant factor to affect the bending strength.

Figures 5 and 6 show the hardness and indentation fracture toughness of the composite as a function of La₂O₃/Y₂O₃ molar ratio, respectively.

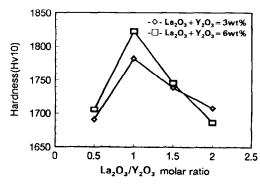


Fig. 5. Vickers hardness as a function of La₂O₃/Y₂O₃ molar ratio.

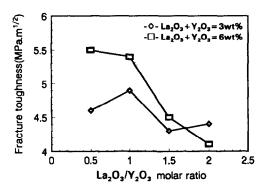


Fig. 6. Fracture toughness as a function of La₂O₃/Y₂O₃ molar ratio.

Grain boundary phase and density are also the dominant factors to affect these two mechanical properties. Ueno and Toibana¹¹ have shown in their experiment that higher La₂O₃/Y₂O₃ molar ratios exhibit the greater microVickers hardness of hot pressed Si₃N₄ when the apparent relative density of samples is higher. In Fig. 5, at La₂O₃/Y₂O₃ = 2.0, the relatively lower hardness may be caused by the lower density. When $La_2O_3/Y_2O_3 = 1.0$, and addition of 3 and 6 wt% La₂O₃ + Y₂O₃ occurs, both of the maximum values of hardness were obtained. This is probably due to the crystallization of the compound containing La₂O₃, Y₂O₃ and Si₃N₄. 15,16 But in this experiment, XRD analysis didn't reveal the above mentioned fact partly because of the small amount of La₂O₃ and Y₂O₃ additions.

Indentation fracture toughness was improved by increasing the amount of additions from 3 to 6 wt% at $La_2O_3/Y_2O_3 \le 1.0$. The reason for this might be that the liquid phase containing more Y_2O_3 in grain boundaries led to the weak bonding of grains as mentioned before so that it can produce a higher energy dissipation path. The work of Xu^{17} also found a similar result to this, but the toughening mechanism is still not clear. Many complicated factors like the wettability and compatibility of the grain boundary phase containing La_2O_3 , Y_2O_3 and Si_3N_4 with the SiC matrix may play an important role in improving the mechanical properties. Further experimental research is still in progress.

4 CONCLUSIONS

- (1) Fine grain size and homogeneous microstructure of SiC-25 vol% Si₃N₄ composite with La₂O₃ and Y₂O₃ additions were obtained by glass encapsulated hot isostatic pressing at 1850°C and 200 MPa pressure. Fracture pattern of this composite was typically along the grain boundary.
- (2) The density of the composite was increased

- by decreasing the La_2O_3/Y_2O_3 molar ratio, that is, Y_2O_3 was effective to promote the densification of the composite.
- (3) Bending strength reached the maximum value of 810 MPa at La₂O₃ + Y₂O₃ = 3 wt% and La₂O₃/Y₂O₃ = 0.5. The improvement of strength was due to the strengthening of grain boundaries by relatively lower amorphous phase existing in grain boundaries.
- (4) Maximum values of hardness (Hv 10 1820) and fracture toughness (K₁c 5.5 MPa.m^{1/2}) were obtained at La₂O₃/Y₂O₃ = 1.0 and 0.5 with La₂O₃ + Y₂O₃ = 6 wt%, respectively. Composition and the bonding strength of the grain boundary phase may dominate these two mechanical properties. Further explanation still left the scientific challenge for future experimental work.

REFERENCES

- ZIEGLER, G., HEINRICH, J. & WOTTING, G., Review — Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride. J. Mater. Sci., 22 (1987) 3041-86.
- KODAMA, H. & MIYOSHI, T., Study of fracture behaviour of very fine-grained silicon carbide ceramics. J. Amer. Ceram. Soc., 73 (1990) 3081-6.
- KLEEBE, H. J., SiC and Si₃N₄ materials with improved fracture resistance. J. Eur. Ceram. Soc., 10 (1992) 151-9.
- WEI, G. C. & BECHER, P. F., Improvement in mechanical properties in SiC by the addition of TiC particles. J. Amer. Ceram. Soc., 67 (1984) 571-4.
- SASAKI, G., NAKASE, H., SUGANUMA, K., FUJITA, T. & NIIHARA, K., Mechanical properties and microstructure of Si₃N₄ matrix composite with nanometer scale SiC particles. J. Ceram. Soc. Jpn, 100 (1992) 536-40.
- GREIL, P., PETZOW, G. & TANAKA, H., Sintering and HIPping of silicon nitride-silicon carbide composite materials. Ceram. Int., 13 (1987) 19-25.
- OMORI, M. & TAKEI, H., Preparation of pressurelesssintered SiC-Y₂O₃-Al₂O₃. J. Mater. Sci., 23 (1988) 3744-9.
- MULLA, M. A. & CRSTIC, V. D., Low-temperature pressureless sintering of β-silicon carbide with aluminum oxide and yttrium oxide additions. Amer. Ceram. Soc. Bull., 70 (1991) 439–43.
- SIGL, L. S., Core/rim structure of liquid-phase-sintered silicon carbide. J. Amer. Ceram. Soc., 76 (1993) 773-6.
- LEE, S. K. & KIM, C. H., Effects of α-SiC versus β-SiC starting powders on microstructure and fracture toughness of SiC sintered with Al₂O₃-Y₂O₃ additives. J. Amer. Ceram. Soc., 77 (1994) 1655-8.
- 11. UENO, K. & TOIBANA, Y., Hot-pressed silicon nitride with various lanthanide oxides as sintering additives. *Yog Yo-Kyokai-Shi*, **91** (1983) 409-14.
- GAZZA, G. E., Effect of yttria additions on hot pressed Si₃N₄. Amer. Ceram. Soc. Bull., 54 (1975) 778-81.
- 13. HUNOLD, K., Hot isostatic pressing of high temperature ceramics. Ceram. Int., 34 (1985) 38-43.
- UNAL, O., PETROVIC, J. J. & MITCHELL, T. E., Mechanical properties of hot isostatically pressed Si₃N₄ and Si₃N₄/SiC composites. J. Mater. Res., 8 (1993) 626-34.

- 15. LANGE, F. F., SINGHAL, S. C. & KUZNICKI, R. C., Phase relations and stability studies in the Si₃N₄-SiO₂-Y₂O₃ pseudoternary system. *J. Amer. Ceram. Soc*, **60** (1977) 249-52.

 16. MITOMO, M., IZUMI, F., HORIUCHI, S. & MATSUI, Y.,
- Phase relations in the system Si_3N_4 – SiO_2 – La_2O_3 . J. Mater.
- Sci., 17 (1982) 2359-64.

 17. XU, Y. Y., HUANG, L. P., FU, X. Y. & YAN, T. S., Hot pressed silicon nitride with rare earth oxide additives. Science in China, Series A (1985) 384-7.