PZT Formation in the Presence of Dopants

Chaouki Boudaren, Abdelhamid Mousser & Le Chuc

Laboratoire de Cristallochimie, Département de Chimie Inorganique, Institut de Chimie, Université de Constantine, Algeria

(Received 25 January 1995; accepted 25 July 1995)

Abstract: The formation of PZT from the oxides Pb₃O₄, TiO₂ and ZrO₂ in the presence of NiO, Fe₂O₃ and Ta₂O₅ additives has been investigated by thermal analysis (DTA and TG), X-ray diffraction and chemical techniques. It is shown that the formation of PZT is accomplished through several steps: decomposition and formation of Pb₃O₄ between 240 and 390°C; formation of PbTiO₃ above 350°C and of its solid solutions at 650°C. The PZT solid solution appears without formation of PbZrO₃. © 1997 Elsevier Science Limited and Techna S.r.l.

1 INTRODUCTION

Lead titanate–zirconate (PZT) solid solution ceramics are well-known as piezoelectric ceramics with a perovskite structure. The reaction sequence through which PZT solid solutions are formed by solid state reactions has been investigated by many authors but with varying conclusions. In this domain, different parameters have been investigated: quality of raw materials, I,4 time and mode of milling In and calcination conditions. In general, the PbTiO₃ formation, which is the first step in the PZT formation reaction, is accompanied by the formation of one of the following solid solutions:

- solid solution of (PbTiO₃)ss characterized by a slight modification of the lattice parameters ⁶
- an intermediate PbO solid solution of a tetragonal form whose lattice is different from the starting one.⁷
- an intermediate PZT solid solution which becomes homogeneous with temperature and calcination time.⁸

A PbZrO₃ formation is observed either with SiO₂ addition,² or when chemically prepared ZrO₂ is used.⁶ The present study is undertaken to investigate the reaction sequence of PZT solid state formation from the the oxides Pb₃O₄, TiO₂ and ZrO₂ in presence of NiO, Fe₂O₃ and Ta₂O₅ additives. DTA, TG, XRD and wet chemical techniques are used to determine the calcination reactions.

2 EXPERIMENTAL PROCEDURE

A single composition 0.49 PbTiO₃–0.46 PbZrO₃–0.05 Pb(Fe_{0.2}Ni_{0.2}Ta_{0.6})O₃ was prepared from an oxide mixture of high purity Pb₃O₄ (99.9%), ZrO₂(99.9%) and TiO₂ as rutile (99.56%). The following oxides were used as additives: NiO (99.9%), Fe₂O₃ (99.0%) and Ta₂O₅ (99.0%).

Powders were mixed in an agate mortar for 10 h in distilled water. After grinding, the particle size was obtained by image analysis (automated SEM technique); the powder morphology is shown in Fig. 1. The mixtures were dried and pressed with 103 MPa into pellets, which were sintered at different temperatures in a PbO atmosphere for 2 h. 11,12 The specimens were examined by X-ray diffractometry (D500-Siemens) with CuKα radiation. The data were processed with a PDP 11/23 computer using the Diffrac-11 program library. 12,13 For the thermal analysis a Rigaku thermobalance and a DSC analyser were used.

3 RESULTS AND DISCUSSION

After the heat treatment the samples were analysed qualitatively (X-ray diffraction) for any remaining Pb₃O₄, TiO₂ and ZrO₂, as well as for possible reaction products, e.g. PbO, PbZrO₃ and PbTiO₃. Interplanar spacings and the indices of the characteristic lines of the oxides are shown in Table 1.

The thermogravimetric study of a small quantity of the mixture shows a mass loss of 1.2% between

C. Boudaren et al.

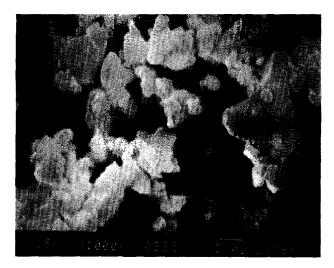


Fig. 1. Scanning electron micrograph (SEM) of unreacted powder: 0.49PbTiO₃-0.46PbZrO₃-0.05Pb(Fe_{0.2}Ni_{0.2}Ta_{0.6})O₃

230 and 440°C [Fig. 2(a)], which is caused by the decomposition of Pb₃O₄. This decomposition is confirmed by the first endothermic effect, observed on the DTA curve, at about 240°C [Fig. 2(b)], as well as by the decrease in the Pb₃O₄ lines intensity, which has been observed on the X-ray diagram of the mixture after calcination at 300°C (Fig. 3). The total decomposition of Pb₃O₄ is characterized by a second loss of mass of 2.20%, at 530°C [Fig. 2(a)] and by a second endothermic effect at the same temperature [Fig. 2(b)].

The analysis of the characteristic line intensity of Pb₃O₄ and of PbO in the diffractograms of the uncalcined sample and those of the calcined material at temperatures of 300°C and 350°C (Fig. 3) shows a variation of the relative quantities of these oxides. This variation is connected to a competition between

Table 1. Interplanar spacings and indices of the characteristic lines of the oxides

Oxide	Diffractograms notation	d _{hkl}	hki
Pb ₃ O ₄	P1	6.2445	110
	P2	3.3781	211
	P3	3.1131	220
	P4	2.9015	112
	P5	1.911	213
PbO	P'1	3.0716	111
	P′2	2.9497	002
	P'3	2.3776	020
TiO ₂	T1	3.2511	110
	T2	2.4884	101
	T3	1.6877	211
	T4	1.6243	220
ZrO ₂	Z1	3.6958	011
	Z2	2.3297	021
PbTiO₃	PT1	4.1456	001
	PT2	2.8371	101
	PT3	2.2927	111
	PT4	1.7619	201
	PT5	1.7414	210
PbZrO ₃	PZ1	2.5548	132
	PZ2	2.3919	042
	PZ3	2.3448	230
	PZ4	1.9312	310

the Pb₃O₄ decomposition reaction and that of its formation, according to the following reaction:

$$3PbO + \frac{1}{2}O_2 \rightarrow P_3O_4 + Q$$

The observation of the exothermic effects on the DTA curves [Fig. 2(b)] and those of DSC (Fig. 4) at 280°C can be a consequence of the Pb₃O₄ formation. At 350°C, the first step in the PZT formation occurs which is the PbTiO₃ formation. This is proved by the observation of two exothermics effects; one at 330°C on the DSC curve (Fig. 4) and the other at 340°C on the DTA curve [Fig. 2(b)]. The PbTiO₃ formation

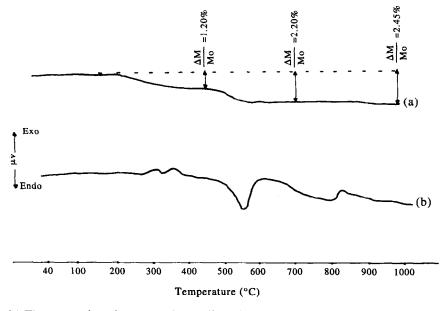


Fig. 2. (a) Thermogravimetric (TG) and (b) differential thermal analysis (DTA) of powder mixture.

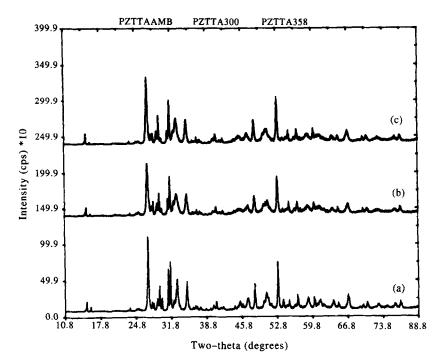


Fig. 3. X-ray diagrams of (a) uncalcined powder mixture and mixtures heat treated at (b) 300°C and (c) 350°C.

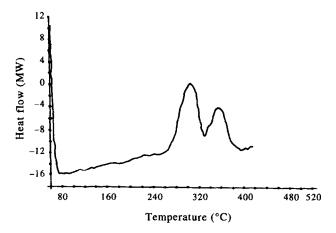


Fig. 4. Differential scanning calorimetry (DSC) curve of powder mixture.

seems to be completed towards 600°C, because at this temperature we observe a total disappearance of the diffraction lines of TiO₂ (Table 2).

Beyond 600°C, a PbTiO₃ solid solution is formed simultaneously, caused by intergranular PbTiO₃–ZrO₂ contacts.⁶ This assumption is established by the relative constancy of the PbO and ZrO₂ amounts and by the slight variation in the a and c parameters of the PbTiO₃ lattice¹² and by the absence of the PbZrO₃ phase. The observation of the endothermic effect on the DTA curve [Fig. 2(b)] at 640°C is associated with the (PbTiO₃)ss formation, according to the following reaction:

$$PbTiO_3 + PbO + ZrO_2 \longrightarrow (PbTiO_3)ss$$

The (PbTiO₃)ss saturation by PbO and ZrO₂ facilitates the PZT formation. The X-ray diffraction pattern of the mixture calcined at 750°C (Fig.

Table 2. Intensity variation (I_{max}) of the characteristic TiO₂ reflections with calcination temperature

Peak notation	/ of mixture calc. at 300°C	/ of mixture calc. at 350°C	/ of mixture calc. at 500°C	of mixture calc. at 600°C
	146	104	24	
T2	49	62	31	_
T3	116	108		
T4	47	36	34	

5), as well as the last endothermic effect from 820°C on the DTA curve [Fig. 2(b)], indicates the formation of the PZT solid solution. This is confirmed by the density measurement (7.02) of the sample calcined at 750°C¹¹ and by the disappearance of the X-ray diffraction lines of ZrO₂ and PbO. The X-ray diffraction pattern of the sample calcined at 1200°C (Fig. 5) shows a better resolution of the diffraction lines.

The calcination process can be described by the following reaction sequence:

a)
$$Pb_3O_4$$

$$\xrightarrow{240-450^{\circ}C} 3 PbO + 1/2 O_2$$
b) $3 PbO + 1/2 O_2$
$$\xrightarrow{280-390^{\circ}C} Pb_3O_4 + Q$$
c) $TiO_2 + PbO$
$$\xrightarrow{T>350^{\circ}C} PbTiO_3$$
d) $PbTiO_3 + PbO + ZrO_2$
$$\xrightarrow{T=750^{\circ}C} (PbTiO_3)ss$$
e) $(PbTiO_3)ss + PbO + ZrO_2$
$$\xrightarrow{T=750^{\circ}C} Pb(Zr,Ti)O_3$$

282 C. Boudaren et al.

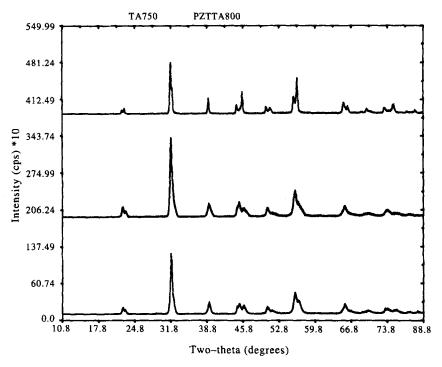


Fig. 5. X-ray diffraction of standard reactants calcined at (a) 750°C, (b) 800°C and (c) 1200°C.

4 CONCLUSION

The formation of PZT from Pb₃O₄, TiO₂ and ZrO₂ in the presence of NiO, Fe₂O₃ and Ta₂O₅ additives has been investigated with DTA, TG, X-ray diffraction and chemical analysis techniques. It is shown that the formation of PZT takes place in several steps: decomposition and formation of Pb₃O₄ between 240 and 390°C; formation of PbTiO₃ above 350°C and of its solid solution at 650°C. The PZT solid solution appears without formation of PbZrO₃.

REFERENCES

- HIREMATH, B. V., KINGON, A. I. & BIGGERS, J. V., Reaction sequence in the formation of lead zirconate-lead titanate solid solution. J. Am. Ceram. Soc., 66 (1983) 790-793.
- OHNO, T., TAKASHI, M. & TSUBOUSHI, N., Perovskite formation process in Pb(Ti,Zr)O₃ ceramics containing SiO₂. J. Japan Soc. Powder Metall., 20 (1973) 154-160.
- 3. CHANDRATAYA, S. S., FULRATH, R. M. & PASK, J. S., Reaction mechanisms in the formation of PZT solid solution. J. Am. Ceram. Soc., 64 (1981) 422-425.
- YAMAGUSHI, T., CHO, S. H., HAMOKORI, M. & KUNO, J. B., Effects of raw materials and mixing

- methods on the solid state reactions involved in fabrication of electronic ceramics. Ceramurgia Int., 2 (1976) 76-80
- KINGON, A. I., TERBLANCHÉ, P. & CLARK, J. B., Effects of reactant dispersion on formation of PZT solid solutions. Ceram. Int., 8 (1982) 108-114.
- JAREN, E. & DURAN, P., Mechanism of the solid state formation of lead zirconate-titanate. J. de Phys., 47 (1986) 537-542.
- HANKEY, D. L. & BIGGERS, J. V., Solid state reaction in the system PbO-TiO₂-ZrO₂. J. Am. Ceram. Soc., 64 (1981) 172-173.
- MATSUO, Y. & SASAKI, H., Formation of lead zirconate-lead titanate solid solutions. J. Am. Ceram. Soc., 48 (1965) 289-291.
- 9. VENKATARAMANY, S. & BIGGERS, J. V., Reactivity of zirconia in calcining of lead zirconate-lead titanate composition prepared from mixed oxides. *Am. Ceram. Soc. Bull.*, **59** (1980) 462-466.
- IKEDA, T., OKANO, T. & WATANABE, M., A ternary system PbO-TiO₂-ZrO₂. Jpn J. Appl. Phys., 1(4) (1962) 218-222.
- JAFFE, B., ROTH, R. S. & MARZULLO, S., Properties of piezoelectric ceramics in the solid solution series lead zirconate-lead titanate-lead oxides: Tin oxides and lead hafnate-lead titanate. J. Rea. Natl Bur. Stand., 55 (1955) 239-254.
- 12. BOUDAREN, C., Magister Thesis, University of Constantine, Algeria, 1992.
- Diffrac 11-Fortran Software System for X-Ray Diffraction, version 2-2 (Siemens). Operating System RSM-11M version-4.1 (Dec.).