# Strontium Bismuth Tantalate Layered Ferroelectric Ceramics: Reaction Kinetics and Thermal Stability

# Chung-Hsin Lu\* & Jiun-Ting Lee

Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan

(Received 22 October 1996; accepted 2 January 1997)

Abstract: Using BiTaO<sub>4</sub> as the precursor, ferroelectric strontium bismuth tantalate SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> was successfully synthesized. Heating the mixtures of BiTaO<sub>4</sub> and SrCO<sub>3</sub> at 800°C resulted in the entire formation of a single phase SrBi<sub>2</sub>. Ta<sub>2</sub>O<sub>9</sub>. The formation process of this compound was verified to be a direct reaction occurring between the reactants without the presence of intermediates. The conversion of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> was isothermally analyzed for exploring the reaction kinetics. The results revealed that the formation process was controlled by the diffusion process. Based on the Ginstling–Brounshtein and Jander models, the activation energy of the diffusion process was estimated to be 194.3 kJ mol<sup>-1</sup> and 210.7 kJ mol<sup>-1</sup>, respectively. SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> was found to become unstable when heated at above 1200°C. Once the decomposition process started, this compound was dissociated into SrTa<sub>2</sub>O<sub>6</sub> and Bi<sub>2</sub>O<sub>3</sub> from surface to interior. © 1998 Elsevier Science Limited and Techna S.r.l. All rights reserved

#### 1 INTRODUCTION

Ferroelectrics which can retain their polarization state after the removal of applied electric field have been intensively investigated for their application to of the nonvolatile memory. The ferroelectric lead zirconate titanate (PZT)-based ceramics have been considered for the memory application; however, when metals are used as electrodes, the PZT system exhibits a serious degradation of the maximum and remnant polarization after long-term switching cycles of electric field.<sup>2</sup> This fatigue behavior becomes extremely detrimental in terms of practical use. On the other hand, the other ferroelectric material-strontium bismuth tantalate SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> using platinum as electrodes has been found recently to possess excellent fatigue endurance even after 10<sup>12</sup> cycles of operation.<sup>3,4</sup> Because of this discovery, an entirely new approach for improving the fatigue problem of ferroelectrics has started.

The crystalline structure of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> belongs to the layered-type perovskite ferroelectrics.<sup>5</sup> The structure of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> consists of the perovskitelike TaO<sub>6</sub> octahedron layers and Bi<sub>2</sub>O<sub>2</sub> layers. The TaO<sub>6</sub> octahedrons construct continuous layers perpendicular to c-axis direction, but in the c-axis direction these octahedrons are separated by the Bi<sub>2</sub>O<sub>2</sub> layers. The presence of the Bi<sub>2</sub>O<sub>2</sub> layers has been thought to serve as the shock-absorber for enduring the fatigue of polarization.<sup>3</sup> The ceramic form of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> was first synthesized by Aurivillius,5 and its dielectric properties and phase transformation were later studied by Smolenskii 6 and Subbarao. As for thin films, Desu<sup>8</sup> and Dat<sup>9</sup> utilized the pulse laser deposition technique for synthesis, Li<sup>10</sup> used MOCVD process, and Araujo,<sup>3</sup> Chu, 11 and Amanuma 12 adopted solution-deposition methods for processing. Excellent electrical properties of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> thin films were found in the above researches.

SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> has been investigated by several research groups; however, for synthesizing the powder or ceramic form, only the conventional

<sup>\*</sup>To whom correspondence should be addressed.

process which uses mixed reactants has been undertaken. In our previous study, 13 a novel process using BiTaO4 as the precursor had successfully prepared another layered-perovskite BaBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>. In this new process, the production of intermediates was suppressed, and the formation of BaBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> was markedly accelerated. obtained powder having a reduced particle size exhibited an enhanced sinterability. For investigating the feasibility of synthesizing SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> by using BiTaO<sub>4</sub> precursors, in the present study, the mixtures of BiTaO<sub>4</sub> and SrCO<sub>3</sub> were used as the starting materials for synthesis. In order to better control the reaction processes, the formation mechanism and reaction kinetics in the formation of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> were studied. The most applicable kinetic models were determined for analyzing the rate-controlling process and the activation energy of reaction. Furthermore, the thermal stability and the decomposition reaction of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> at elevated temperatures were also examined.

# 2 EXPERIMENTAL

BiTaO<sub>4</sub> and SrCO<sub>3</sub> were used as the starting materials for synthesizing SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>. For preparing the BiTaO<sub>4</sub> precursors, equal moles of reagent-grade Bi<sub>2</sub>O<sub>3</sub> and Ta<sub>2</sub>O<sub>5</sub> were ball-milled in ethanol in a polyethylene jar for 48 h. Following drying in a rotary evaporator under reduced pressure, the dried powder was heated at 900°C for 2 h to obtain pure BiTaO<sub>4</sub>. The obtained BiTaO<sub>4</sub> powder was subsequently mixed in proportion with SrCO<sub>3</sub>, followed by the analogous ball-milling and drying processes as described above. Then the dried powder was used in the following experiments.

The mixtures of BiTaO<sub>4</sub> and SrCO<sub>3</sub> were subjected to differential thermal analysis (DTA) and thermogravimetry analysis (TGA) for tracing the reaction processes. The heating rate was  $10^{\circ}$ C min<sup>-1</sup> and alumina powder was used as reference. For realizing the phase change during reaction, the mixtures were heated in an electric furnace at the same heating rate as that in the thermal analysis, and were quenched in air at various temperatures. The change of the phase formation in the quenched specimens was identified via X-ray powder diffraction (XRD) analysis using CuK<sub>\pi</sub> radiation. The microstructures of the quenched specimens were observed using a scanning electronic microscope (SEM).

In order to explore the reaction kinetics of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>, the mixed powder was isothermally heated in TGA. The weight loss of the specimens was automatically recorded by a personal computer.

The weight loss at each reaction condition was calculated and converted into the fractional conversion of reaction. For examining the thermal stability of  $SrBi_2Ta_2O_9$ , the synthesized pure compound were pressed into pellets, and these pellets were heated at temperatures ranging from 1100°C to 1300°C. The compounds formed on the surface and in the bulk of the heated specimens were identified via XRD.

#### **3 RESULTS AND DISCUSSION**

### 3.1 Formation process of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>

Figure 1 illustrates the TGA and DTA curves of the starting material of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> from room temperature to 1100°C. On the TGA curve the specimen weight gradually decreased at 600°C and above, and the total weight loss increased to be around 4.1% at 750°C. No further weight loss was found at higher temperatures. On the DTA curve a broad endotherm was observed at temperature ranging from 600°C to 750°C. This temperature range was the same as that of weight loss. For realizing the reaction mechanism, the starting materials were heated and quenched at various temperatures. The representative XRD patterns for quenched specimens are shown in Fig. 2; in addition, Fig. 3 illustrates the relative content of each phase against the quenching temperature. At 500°C only the reactants SrCO<sub>3</sub> and BiTaO<sub>4</sub> were present, indicating that no reactions occurred. From 600°C a small amount of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> started to produce. With the rise in heating temperatures, the amount of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> rapidly increased;

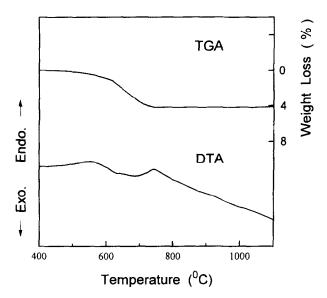



Fig. 1. Differential thermal analysis and thermogravimetry analysis of the starting materials of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>.

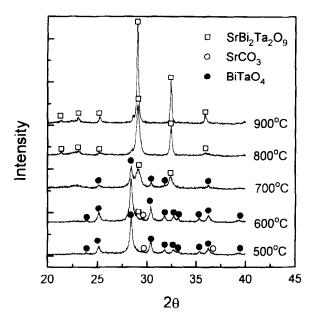



Fig. 2. X-ray diffraction intensity of the starting materials of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> heated at various temperatures.

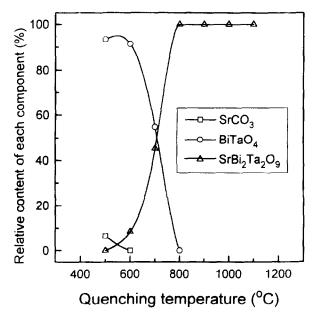



Fig. 3. Relative contents of the resulting compounds during heating the starting materials of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> at various temperatures.

whereas those amounts of BiTaO<sub>4</sub> and SrCO<sub>3</sub> correspondingly decreased. When the temperature reached 800°C, both reactants were entirely consumed, revealing that the formation of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> was complete. On further heating to 900°C, the crystallinity of this compound was enhanced. The above XRD results indicated that SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> was successfully synthesized via the new reaction routes using BiTaO<sub>4</sub> as the precursor. Furthermore, the high reactivity between BiTaO<sub>4</sub> and SrCO<sub>3</sub> when the heating temperature reached 800°C resulted in the complete formation of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>. SEM analysis showed that the synthesized SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> powder had an uniform morphology. The particle size

of the  $800^{\circ}$ C-quenched sample was around 0.05–  $0.15\,\mu m$ , and that of the  $900^{\circ}$ C-quenched sample was enlarged to 0.1– $0.2\,\mu m$ .

According to the results of Figs 2 and 3, the weight loss on TGA in Fig. 1 was ascribed to the release of carbon dioxide from SrCO<sub>3</sub> for producing SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>, and meanwhile the formation of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> resulted in the endotherm on DTA. Based on the results in Fig. 3, the reaction mechanism of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> was confirmed to be a direct reaction occurring between two reactants without the presence of any intermediate compounds. Therefore, the formation of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> can be elucidated by the following equation:

$$SrCO_3 + 2BiTaO_4 \rightarrow SrBi_2Ta_2O_9 + CO_2$$
 (1)

The above equation satisfies the requirement of mass balance.

### 3.2 Reaction kinetics of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>

The formation of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> is associated with the vaporization of carbon dioxide from SrCO<sub>3</sub> as expressed in eqn (1), therefore the data of weight loss can be used to calculate the conversion in reactions. The starting materials were isothermally heated at 600, 630, and 660°C for 60 min. The percentage weight loss at each temperature is plotted against reaction time as shown in Fig. 4. This figure indicates that when the reaction time was fixed, the weight loss increased with higher temperatures. Based on eqn (1), the theoretical weight loss is 4.17% when the entire reaction is complete. Therefore the fractional conversion (α) of eqn (1) can be

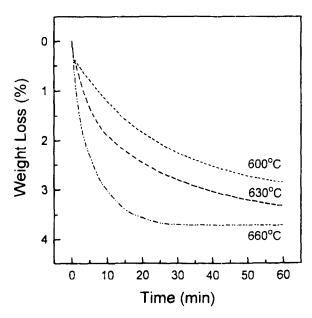



Fig. 4. Weight loss of the starting materials heated at 600, 630, and 660°C, respectively.

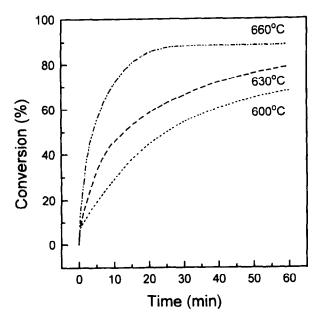



Fig. 5. Conversion ratio of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> vs reaction time at 600, 630, and 660°C, respectively.

defined as being the ratio of the experimental weight loss to the theoretical weight loss. Figure 5 illustrates the relation between the conversion ratios and reaction conditions. At all three temperatures, the conversion ratio monotonously rose with longer reaction time. It is noted that at the same reaction period, the conversion increased with a rise in the heating temperature. After reacting for 60 min, the conversion ratios at 600 and 630°C were 68 and 77%, respectively. On the other hand, the conversion at 660°C reached nearly around 89% after only 25 min of reaction. Figure 5 indicates that the conversion was enhanced with an increase in reaction temperature and time.

In order to analyze the reaction kinetics of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>, the Hancock and Sharps' method<sup>14</sup> based on the Avrami-Erofe'ev equation<sup>15,16</sup> was adopted. According to this method, a generalized equation is applicable to identify the classification of reaction kinetics. The linear form of this equation is expressed as

$$\ln(-\ln(1-\alpha)) = \ln B + m \ln t \tag{2}$$

where  $\alpha$  is the conversion ratio, t the reaction time, and B a constant which is determined by nucleation frequency and grain growth rate. The slope m obtained by plotting the left-hand term in eqn (2) against  $\ln t$  is a characteristic value depending on the controlling mechanism in solid-state reactions. When m = 0.54 - 0.62, the mechanism belongs to the diffusion-controlled type. For m = 1.0 - 1.24, a zero-order, first-order, or phase-boundary controlled mechanism is implied. When m = 2.0 - 3.0, the reaction mechanism is classified to be the nucleation and growth-controlled type.

Figure 6 shows  $\ln(-\ln(1-\alpha))$  plotted against vs In (time), and three straight lines were obtained as a result. The values of m at 600, 630, and  $660^{\circ}$ C were estimated to be 0.61, 0.61, and 0.66, respectively. According to Hancock and Sharps' study,14 the type of diffusion-controlled mechanism is considered to dominate the reaction of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>. diffusion-controlled models,14 Among the considering that the reactions took place among particles in three-dimension, the Ginstling-Brounshtein<sup>17</sup> and Jander's<sup>18</sup> models were chosen to fit the relation between conversion and reaction time. The former model is expressed as

$$1 - 2\alpha/3 - (1 - \alpha)^{2/3} = kt$$
 (3)

and the latter one is expressed as

$$[1 - (1 - \alpha)^{1/3}]^2 = kt \tag{4}$$

where k is the reaction rate constant. The above two functions of α were plotted against reaction time, and the linearity coefficients and the values of k for eqns (3) and (4) are summarized in Table 1. The data in this table indicate that the lines derived from both Ginstling–Brounshtein and Jander's models exhibited good linearity at all three temperatures. In view of the fact that eqns (3) and (4) hold well throughout the reaction process, the Ginstling–Brounshtein and Janders' models can properly describe the reaction mechanism of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>. Using the data of k listed in Table 1 and Arrhenius's equations cited below:

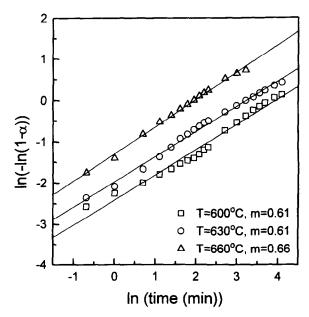



Fig. 6. Plot of  $\ln (-\ln(1-\alpha))$  vs  $\ln t$  for the formation process of  $SrBi_2Ta_2O_9$ .

Table 1. Reaction rate constant (k) and the linearity coefficient (R) of the function of conversion with reaction time based on the Ginstling-Brounshtein and Jander's models

| Heating temperature (°C) | Ginstling-Brounshtein model |       | Jander's model |       |
|--------------------------|-----------------------------|-------|----------------|-------|
|                          | k(min <sup>1</sup> )        | R     | k(min 1)       | R     |
| 600                      | 0.0014                      | 0.996 | 0.0018         | 0.996 |
| <b>63</b> 0              | 0.0025                      | 0.995 | 0.0032         | 0.998 |
| 660                      | 0.0081                      | 0.991 | 0.0012         | 0.997 |

$$k = k_0 \exp(-E/RT) \tag{5}$$

the activation energy (E) of the reaction can be derived. Figure 7 illustrates the plot of log(k) vs 1/T for both models. From the slope of the line in Fig. 7, the activation energy for SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> formation was calculated to be 210.7 kJ mol<sup>-1</sup> for Jander's model, and 194.3 kJ mol<sup>-1</sup> for Ginstling–Brounshtein model. Taking possible experimental errors into consideration, these two derived activation energies are accurately quite close.

# 3.3 Decomposition of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>

For examining the thermal stability of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>, the pressed SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> pellets were heated at elevated temperatures. The XRD patterns of the ground powder of the heated pellets are shown in Fig. 8. After 1100°C heating, only SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> was identified; however, when the temperature was raised to 1250°C, SrTa<sub>2</sub>O<sub>6</sub> was found to coexist with SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>. The appearance of SrTa<sub>2</sub>O<sub>6</sub> was caused by the thermal decomposition of SrBi<sub>2</sub>. Ta<sub>2</sub>O<sub>9</sub>. After 1300°C heating, the amount of

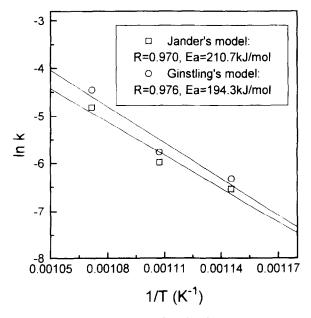



Fig. 7. Plot of ln (k) vs 1/T for the formation process of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>.

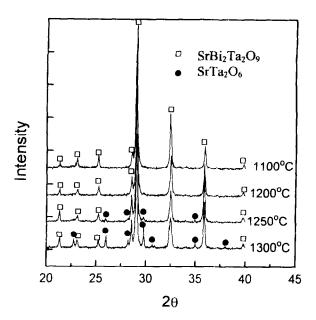



Fig. 8. X-ray diffraction patterns of the ground powder of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> pellets heated at 1100, 1200, 1250, and 1300°C, respectively.

SrTa<sub>2</sub>O<sub>6</sub> further increased with a corresponding reduction in that of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>. The surface of these heated specimens was also examined via XRD. Figure 9 compares the relative amount of SrTa<sub>2</sub>O<sub>6</sub> between the bulk and the surface of the heated specimens. The relative amount of SrTa<sub>2</sub>O<sub>6</sub> was calculated by dividing the diffraction intensity of the major peak of SrTa<sub>2</sub>O<sub>6</sub> at  $2\theta = 29.6^{\circ}$  by the sum of the intensity of the major peak of SrBi<sub>2</sub>. Ta<sub>2</sub>O<sub>9</sub> at  $2\theta = 28.4^{\circ}$  and that of SrTa<sub>2</sub>O<sub>6</sub> at  $2\theta = 29.6^{\circ}$ . SrTa<sub>2</sub>O<sub>6</sub> was also found to start forming on surface from above  $1200^{\circ}$ C; moreover, the amount of SrTa<sub>2</sub>O<sub>6</sub> on surface was significantly greater than that in bulk. After \$\mathbb{1}300^{\circ}\$C heating,

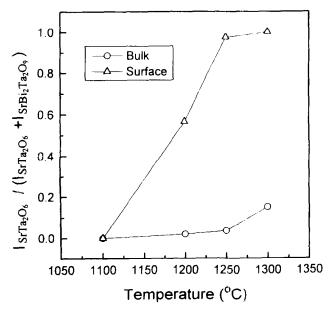
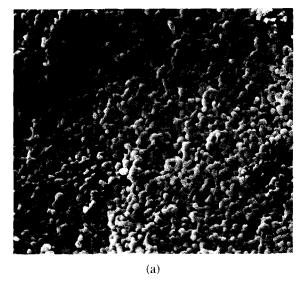




Fig. 9. Relative amounts of SrTa<sub>2</sub>O<sub>6</sub> present in the bulk and on the surface of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> pellets at various heating temperatures.

$$SrBi_2Ta_2O_9 \rightarrow SrTa_2O_6 + Bi_2O_3 \tag{6}$$



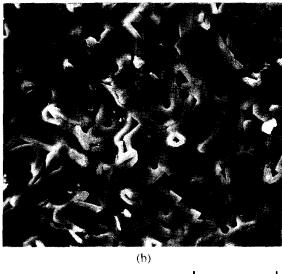



Fig. 10. Scanning electron micrographs of the SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> pellets heated at (a) 1100°C and (b) 1250°C.

10 um

only SrTa<sub>2</sub>O<sub>6</sub> was found on the specimen surface. On the other hand, merely 15% SrTa<sub>2</sub>O<sub>6</sub> was formed in bulk.

The surface microstructures of the specimens heated at 1100 and 1250°C are shown Fig. 10. At 1100°C (before decomposition), the microstructure appeared to be uniform, and SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> grains with a size of around 0.6 μm were observed. When SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> became decomposed, the microstructure drastically varied. Observing in the 1250°C heated specimen as shown in Fig. 10(b), the grain size rapidly increased to 2–8 μm, and the shape of these grains became rather irregular. From the EDS analysis, the composition of these grains was found to primarily consist of strontium and tantalum with a ratio of around 1:2; therefore, these grains were confirmed to be SrTa<sub>2</sub>O<sub>6</sub>.

According to the above results, the decomposition reaction of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> can be expressed via a balanced stoichiometric equation as below:

Since the amount of SrTa<sub>2</sub>O<sub>6</sub> on surface is greater than that in bulk, it is reasonable to suggest that the decomposition process of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> begins from the surface of specimens. At the temperatures where the decomposition of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> occurs, the vapour pressure of Bi<sub>2</sub>O<sub>3</sub> is quite high. As SrBi<sub>2</sub>. Ta<sub>2</sub>O<sub>9</sub> gets decomposed, Bi<sub>2</sub>O<sub>3</sub> will evaporate out gradually. On the specimen surface Bi<sub>2</sub>O<sub>3</sub> is able to easily to evaporate out from specimens; therefore, the decomposition process starts from specimen surface. Based on the above results, in attempt to prevent the decomposition of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>, reducing the heating temperatures to be below 1200°C and increasing the atmosphere of bismuth in the heating environment are considered to be practicable strategies.

#### **4 CONCLUSIONS**

Ferroelectric layered-perovskite SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> was successfully prepared through a new process using BiTaO<sub>4</sub> as the precursor. Heating the mixtures of BiTaO<sub>4</sub> and SrCO<sub>3</sub> at 800°C resulted in the formation of a single phase of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>. During the reaction process, no intermediate phase was observed, revealing that the formation process was a direct reaction between two constituent compounds. Through the isothermal analysis of the reaction kinetics, the controlling reaction in the formation process of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> was determined to be the diffusion process. The diffusion-controlled models using Ginstling-Brounshtein and Jander theories were found to well fit the experimental results. Based on Ginstling-Brounshtein and Jander models, the activation energy of the diffusion process was calculated to 194.3 kJ mol<sup>-1</sup> and 210.7 kJ mol<sup>-1</sup>, respectively. The crystalline structure of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> was found to remain stable at temperatures up to 1100°C. However, this compound became unstable from 1200°C, and dissociated into SrTa<sub>2</sub>O<sub>6</sub> and Bi<sub>2</sub>O<sub>3</sub>. The decomposition process started from the surface of specimens and subsequently progressed towards the interior.

#### **REFERENCES**

- SCOTT, J. F., PAZ, DE ARAUJO C. A., Ferroelectric memories. Science, 246 (1989) 1400–1405.
- SPIERINGS, G. A. C., ULENAERS, M. J. E., KAMP-SCHOER, G. L. M., VAN, HAL H. A. M. & LARSEN, P. K., Preparation and ferroelectric properties of

- PbZr<sub>0.53</sub>Ti<sub>0.47</sub>O<sub>3</sub> thin film by spin coating and metaorganic decompositon. *J. Appl. Phys.*, **70** (1991) 2290.
- PAZ, DE ARAUJO C. A., CUCHIARO, J. D., SCOTT, M. C. & MCMILLAN, L. D., Layered superlattice material applications background of the invention. Inter. Patent Appl. WO93/12542, 1993.
- SCOTT, J. F., ROSS, F. M., PAZ, DE ARAUJO C. A., SCOTT, M. C. & HUFFMAN, M., Structure and device characteristics of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>-based nonvolatile random-access memories. *Mater. Res. Soc. Bull.*, 21 (1996) 33–39.
- AURIVILLUS, B., Mixed bismuth oxides with layer lattices, I. The structure type of CaNb<sub>2</sub>Bi<sub>2</sub>O<sub>9</sub>. Arkiv für kemi, 54 (1949) 463-80
- SMOLENSKII, G. A., ISUPOV, V. A. & AGRA-NOVSKAYA, A. I., Ferroelectrics of oxygen-octahedral type with a layer structure. Fiz. Tverdogo Tela., 3 (1961) 895–901.
- SUBBARAO, E. C., A family of ferroelectric bismuth compounds. J. Phys. Chem. Solids, 23 (1962) 665-676.
- 8. DESU, S. B. & VIJAY, D. P., Novel fatigue-free layered structure ferroelectric thin films. *Mater. Sci. Eng.*, **B32** (1995) 75–81.
- DAT, R. D., LEE, J. K., AUCIELLO, O. & KINGON, A. I., Pulsed laser ablation synthesis and characterization of layered Pt/SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>/Pt ferroelectric capacitors with practically no polarization fatigue. *Appl. Phys. Lett.*, 67 (1995) 572–574.

- LI, T., ZHU, Y., DESU, S. B., PENG, C. H. & NAGATA, M., Metalorganic chemical vapor deposition of ferroelectric SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> thin films. *Appl. Phys. Lett.*, 68 (1996) 616-618.
- CHU, P. Y., JONES, R. E., ZURCHER, Jr, P., TAY-LOR, D. J., JIANG, B. P. D. & GILLESPIE, S. J., Characteristics of spin-on ferroelectric SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> thin film capacitors for FERAM applications. *J. Mater. Res.*, 11 (1996) 1065–1068.
- 12. AMANUMA, K., HASE, T. & MIYASAKA, Y., Preparation and ferroelectric properties of SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> thin films. *Appl. Phys. Lett.*, **66** (1995) 221–223.
- 13. LU, C. H. & FANG, B. K., Synthesis process and sintering behavior of layered-perovskite barium bismuth tantalate ceramics. *J. Mater. Res.*, (in press).
- 14. HANCOCK, J. D. & SHARP, J. H., Method of comparing solid-state kinetics data and its application to the decomposition of kaolinite, brucite, and BaCO<sub>3</sub>. J. Am. Ceram. Soc., 55 (1972) 74–77.
- 15. AVRAMI, M., Kinetics of phase change: I. *J Chem. Phys.*, 7 (1939) 1103-1112.
- EROFE'EV, B. V., Generalized equation of chemical kinetics and its application in reactions involving solids. *Acad. Sci. USSR*, 52 (1946) 511–514.
- GINSTLING, A. M. & BROUNSHTEIN, V. I., Concerning the diffusion kinetics of reactions in spherical particles. J. Appl. Chem. USSR, 23 (1950) 1327–1338.
- JANDER W., Reactions in solid state at high temperatures: I. Z. Anorg. Allgem. Chem., 163 (1927) 1-30.