

Ceramics International 25 (1999) 681-687

Sintering behavior of Al₂TiO₅ base ceramics and their thermal properties

M. Nagano^a, S. Nagashima^{b,*}, H. Maeda^a, A. Kato^c

^aDepartment of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

^bTohwa Institute for Science, Tohwa University, 1-1-1, Chikushigaoka, Minami-ku, Fukuoka 815-8510, Japan ^cDepartment of Applied Chemistry, Kumamoto Institute of Technology, Ikeda 4-22-1, Kumamoto 860-0082, Japan

Received 9 April 1998; received in revised form 5 May 1998; accepted 24 July 1998

Abstract

Sintering behavior of Al₂TiO₅ without and with various additives and the thermal properties of the sintered material—thermal expansion and decomposition—were investigated. The precursors of Al₂TiO₅ powders were prepared by homogeneous precipitation and coprecipitation. Sintering of pure Al₂TiO₅ gave a fine grained-structure at 1300°C, but resulted in large-grained and cracked microstructures at 1400 and 1500°C. Addition of ZrO₂ or BaO gave fine-grained microstructures with a small increase in thermal expansion. Addition of ZrO₂, BaO or ZrSiO₄, especially ZrSiO₄, was effective in suppressing the thermal decomposition of Al₂TiO₅ at 1100°C. © 1999 Elsevier Science Ltd and Techna S.r.l. All rights reserved.

Keywords: A. Sintering; C. Thermal expansion; D. Al₂TiO₅; Additives

1. Introduction

Aluminum titanate (Al₂TiO₅) is characterized as a low thermal expansion material having a melting point as high as 1860°C. However, its low expansion is due to a prominent thermal expansion anisotropy which tends to cause cracks in the sintered bodies, making it difficult to obtain a high-density [1]. In addition, Al₂TiO₅ decomposes into α -Al₂O₃ and TiO₂ (rutile) in the temperature range 900–1280°C. The mechanical strength of Al₂TiO₅ ceramics increases as the grain size decreases [2]. To suppress the decomposition of Al₂TiO₅ and to prepare the fine-grained ceramics, many investigators have examined the effect of various additives such as MgO, SiO₂ or ZrO₂ [3–8]. Yano et al. [9,10] investigated thermal and mechanical properties of Al₂TiO₅–mullite composites.

In the present paper, the sinterability of fine powder of Al₂O₃–TiO₂ hydrate prepared by homogeneous precipitation and the effects of addition of low-thermal-expansion glass, barium salts, ZrO₂ and ZrSiO₄ on the sintering behavior of the Al₂O₃–TiO₂ system were investigated.

2. Experimental procedure

2.1. Preparation of powder and sintering

2.1.1. Homogeneous precipitation method

Titanium oxysulfate (TiOSO₄), aluminum sulfate (Al₂(SO₄)₃) and urea ((NH₂)₂CO) were dissolved in distilled water. The solution was heated at 90°C and was stirred by a motor-driven stirrer (1700 r.p.m.) during synthesis until the pH of the solution reached 6.0. The product was centrifugally collected, rinsed and dried in vacuum at 70°C. The powder was then calcined in air at 800 to 1300°C for 1 h. After compaction into discs, the green compacts were sintered in air at temperatures in the 1300 to 1500°C range for 4 h.

2.1.2. Coprecipitation method

 Al_2TiO_5 precursor was obtained by a coprecipitation of mixing the sulfate ([$Al_2(SO_4)_3$]=[$TiOSO_4$]=0.05 mol dm⁻³, 250 cm³) and NH₄OH (2 N, 100 cm³) solutions. The precipitate was rinsed and dried in a vaccum at 70°C and was calcined in air at 1000°C for 1 h. This calcined powder and the additives were mixed in ethanol. For Al_2TiO_5 – $ZrSiO_4$ composite, the calcined and $ZrSiO_4$ powders ($ZrSiO_4$; commercial powder irregular

^{*} Corresponding author.

shape particles below 4 μm in diameters) were mixed in the same way. After drying, the mixed powder was isostatically pressed to discs of approximately 10 mm diameter. The green compact was sintered in air at 1300 to 1400°C for 4 h.

2.2. Analysis

The powders were analyzed by thermoanalysis (TG-DTA). The crystal phases of the samples were identified by X-ray diffraction (XRD) using CuK_{α} radiation. The amount of the Al_2TiO_5 phase in the calcined powders and sintered products was calculated from the calibration curves which were made by using the X-ray diffraction intensities of (113) of α - Al_2O_3 , (110) of TiO_2 (rutile) and (110) of Al_2TiO_5 . The specimens for thermal decomposition were heated in an electric furnace at $1100^{\circ}C$ for the prescribed time, and were quenched rapidly to room temperature.

The densities of the green and sintered compacts were obtained using a cathetometer and the Archimedes method, respectively. The theoretical density of Al₂TiO₅ and ZrSiO₄ used were 3.702 and 4.70 g cm⁻³, respectively. The morphology of as-synthesized powder and of fracture surfaces of sintered bodies was observed under a scanning electron microscope (SEM). The sintered bodies were analyzed with an energy-dispersion X-ray microanalyzer (EDX) for aluminum and titanium.

2.3. Measurement of thermal expansion

The variations of volume of the sintered bodies with the temperature were measured with a thermal mechanical analysis apparatus (TMA). Specimens for measurement were pressed to rods of 5 mm in diameter and 10–20 mm in length, and sintered for 4 h at prescribed temperatures. The α -Al₂O₃ (the thermal expansion coefficient: $8.0\times10^{-6}~\mathrm{K}^{-1}$) was used as reference specimen. Heating or cooling rates were 5°C min⁻¹. The

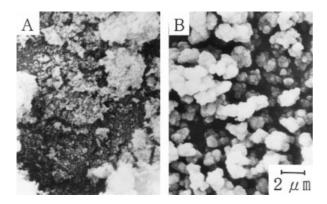


Fig. 1. SEM photographs of powders prepared by homogeneous precipitation method. Precipitation conditions: $[Al_2(SO_4)_3] = [TiOSO_4] = 0.01 \text{ mol dm}^{-3}(A), 0.025 \text{ mol dm}^{-3}(B), [(NH_2)_2CO] = 10.0 \text{ mol dm}^{-3};$ temperature = 90°C.

thermal expansion coefficient was calculated from the measurements in the 100 to 1000°C range.

3. Results and discussion

3.1. Homogeneous precipitates

The precipitation conditions were [urea] = 10.0 mol dm⁻³ and [TiOSO₄] = [Al₂(SO₄)₃] = 0.01 mol dm⁻³

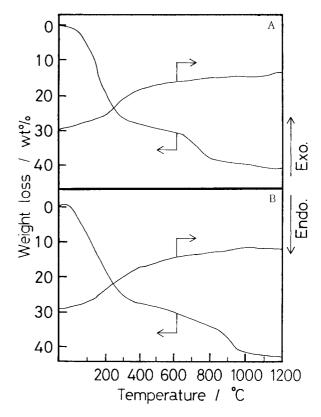


Fig. 2. TG-DTA curves of the homogeneous precipitates measured at heating rate 10° C min⁻¹ in the flow of air. A and B for samples are the same as in Fig. 1. DTA; full scale is $\pm 25 \ \mu V$.

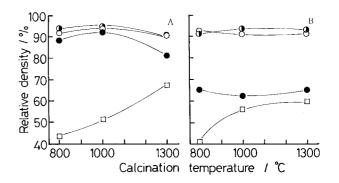


Fig. 3. Effects of calcination and sintering temperature on densification. Green body: \square . Sintering temperature: \bigcirc , 1300°C; \bigcirc , 1400°C; \bigcirc , 1500°C. Sintering time: 4 h. Calcination time: 1 h. A and B for samples are the same as in Fig. 1.

Table 1 Crystalline phase in calcined powders

Calcination temperature (°C)	X-ray analysis			
	Homogeneous precipitate		Coprecipitate	
	(A)	(B)		
As-prepared	Amorphous	Amorphous	Amorphous	
800	Α	A	A	
900	A, AT	_	A	
1000	AT, A	R, C, A	AT, R, C, A	
1100	R, C, AT		R, C	
1200	_	_	R, C	
1250	R, C	R, C		
1300	AT, R	R, C, AT	R, C, AT	

Key: $A = TiO_2$ (anatase), $R = TiO_2$ (rutile), $C = \alpha - Al_2O_3$ (corundum), $AT = Al_2TiO_5$. Calcination time: 1 h.

(A) and 0.025 mol dm⁻³ (B). The precipitates are shown in Fig. 1. TiO₂ hydrate particles precipitate first and Al₂O₃ hydrate particles follow with the rise of solution pH due to hydrolysis of urea. The small size of particles (A) is probably due to precipitation taking place rapidly at low salt concentration. On the other hand, precipitates (B) form slowly under high salt concentration, and the particle growth occurs by aggregation of small particles into the larger particles. TG-DTA curves are shown in Fig. 2. Dehydration of both powders occurred below ca. 400°C. The decomposition of the sulfate group occurred above 600°C in specimen (A) and above 800°C in specimen (B). The decomposition temperature is believed to change depending on particle size. Crystalline phases found in calcined powders are summarized in Table 1. The precipitates were amorphous; both

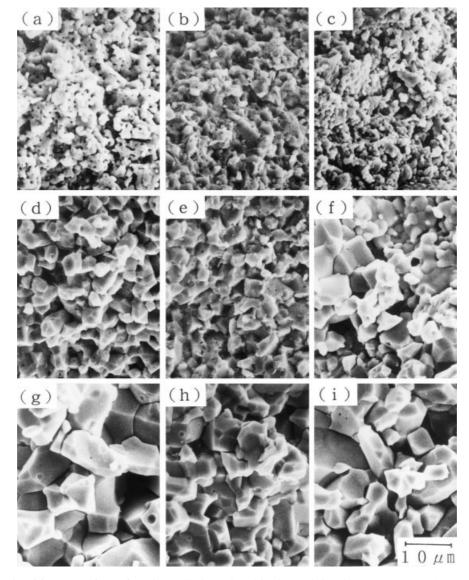


Fig. 4. SEM photograghs of fracture surfaces of specimen (A) sintered. Calcination and sintering temperatures: (a) 800°C, 1300°C; (b) 1000°C, 1300°C; (c) 1300°C, 1300°C, 1300°C, 1400°C; (e) 1000°C, 1400°C; (f) 1300°C, 1400°C; (g) 800°C, 1500°C; (h) 1000°C, 1500°C; (i) 1300°C, 1500°C.

products calcined at 800°C contained an anatase phase. Al₂TiO₅ phase was found at 1000°C in powder (A) and at 1300°C in powder (B). The equilibrium temperature for α -Al₂O₃+TiO₂ (rutile) \rightleftharpoons Al₂TiO₅ is 1285°C . The formation of Al₂TiO₅ at 1000°C in powder (A) seems to be due to the thermodynamically unstable state of both reactants, amorphous Al₂O₃ and TiO₂ (anatase).

The effects of calcination and sintering temperatures on densification are shown in Fig. 3. Al₂TiO₅ was the main crystal phases of all sintered bodies. In the case of specimen (A), relative densities of sintered bodies were around 90%. Fracture surfaces of specimen (A) are shown in Fig. 4. At sintering temperatures of 1400 and 1500°C, a marked grain growth and many cracks were observed. Specimen calcined at 1000°C and sintered at 1300°C had 92% of theoretical density and a microstructure with about 2 μm in grain diameters [Fig. 4(b)]. The high sintered density and the fine microstructure are probably due to an Al₂TiO₅ phase produced in the powder calcined at 1000°C which would serve as nucleus to promote reactions in sintering.

In the case of specimen (B), relative densities of sintered bodies at 1300°C were below 70% as shown in Fig. 3. At a sintering temperature of 1500°C, the grains grow, and there were many cracks. By sintering at 1400°C, the powder calcined at 1000°C gave a sintered body having relatively small grain size with 94% of theoretical density.

3.2. Coprecipitates and effect of additives

3.2.1. Properties of Al_2TiO_5 precursor prepared by coprecipitation method

SEM photograghs of precipitates and crystal phases of calcined powders are shown in Fig. 5 and Table 1, respectively. The coprecipitates were aggregates consisting of primary particles of about 50 nm in diameter. Al₂TiO₅ is formed by calcination at 1000°C as shown in Table 1. The formation of Al₂TiO₅ may be explained as well as in the powder (A) prepared in homogeneous precipitation method. From this result, calcination was done at 1000°C in the following.

Fig. 6(a) shows a SEM photograph of the fracture surface of sintered body at 1300° C. Al₂TiO₅ sintered body consisted of crystal grains of about $10~\mu m$, and large cracks existed in the body. Small grains of 2–3 μm in diameter were observed in the large grains.

3.2.2. Effects of additives on microstructures of sintered bodies

Ten weight percent of glass powders were added to Al_2TiO_5 in order to accelerate the sintering and control the microstructure. By adding $Na_2O-B_2O_3-SiO_2$, $CaO-Al_2O_3-SiO_2$ or $ZnO-B_2O_3-SiO_2$ glass powders, the grains of the sintered bodies grew and the density of sintered body or Al_2TiO_5 formation ratio decreased in

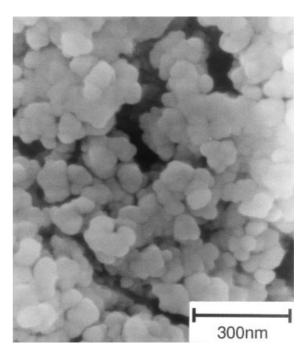


Fig. 5. SEM photographs of an Al_2TiO_5 precursor prepared by coprecipitation. Precipitation conditions: $[Al_2(SO_4)_3] = [TiOSO_4] = 0.05$ mol dm⁻³ (250 cm³), $[NH_4OH] = 2.0$ mol dm⁻³ (100 cm³).

several combinations of sintering temperature and additives. By adding PbO–B₂O₃–SiO₂ glass powder, the formation of Al₂TiO₅ was inhibited and the density of sintered body became low. Needle-like grains were observed as shown in Fig. 6(b) which were found to be TiO₂ (rutile) by EDX and XRD analyses. It is thought that excess TiO₂ crystallized because the Al₂O₃ component dissolved in the glass.

Sintered bodies with a fine microstructure were obtained by addition of PbO-BaO-SiO₂ or CaO-BaO-SiO₂ glass powder [Fig. 6(c)]. The depression of grain growth by both BaO containing additives was confirmed with 10 mol% addition of Ba(NO₃)₂, BaCl₂ or BaCO₃. Regardless of the kind of barium salts, the structure of the sintered bodies became fine-grained with increasing concentration of barium salts [Fig. 6(d)] and there were no cracks in grain boundaries of the sintered body. Crystalline phase and relative densities of sintered bodies are summarized in Table 2. BaO reacted with the Al₂O₃ component to form BaAl₂O₄ in the sintered body. The addition of ZrO₂ was also very effective for suppression of grain growth [Fig. 6(e)] in a similar manner as in past studies [2,3], and, in this case, ZrTiO₄ formed in the sintered body. It is thought that BaAl₂O₄ phase or ZrTiO₄ phase formed in the sintered body existed at grain boundaries and depressed grain growth. Cracks might not occur easily in grain boundaries because the stress due to cooling after sintering was small due to fine grain sizes.

The thermal expansion curves are shown in Fig. 7. The thermal expansion ratio of specimens without

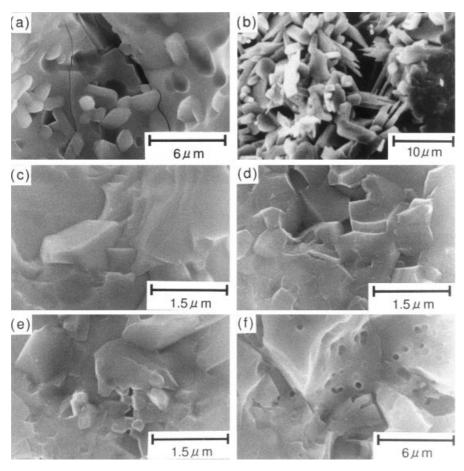


Fig. 6. SEM photographs of the fracture surfaces of Al_2TiO_5 sintered bodies. (a) No additive, (b) 10 wt% PbO- B_2O_3 -SiO₂, (c) 10 wt% CaO-BaO-SiO₂, (d) 10 mol% Ba(NO₃)₂, (e) 5 mol% ZrO₂, (f) 80 mol% Al_2TiO_5 -20 mol% ZrSiO₄. Sintering conditions: 4 h at 1300°C (a–e) and at 1400°C (f). Green and sintered densities (%): (a) 52, 92; (b) 56, 82; (c) 55, 85; (d) 56, 93; (e) 56, 94; (f) 57, 93.

Table 2
Analysis results of sintered bodies with additives

Additive	Sintering temperature (°C)	Relative density	X-ray analysis
None	1300	92	AT, R, C
	1350	91	AT, R, C
	1400	91	AT
10 mol% Ba(NO ₃) ₂	1300	93	AT, R, C, BA
	1350	89	AT, BA
	1400	90	AT, R, C, BA
10 mol% BaCO ₃	1300	96	AT, R, C, BA
	1350	94	AT, R, C, BA
	1400	92	AT, R, C, BA
10 mol% BaCl ₂	1300	92	AT, R, C, BA
	1350	91	AT, BA
	1400	91	AT, R, C, BA
5 mol% ZrO ₂	1300	94	AT, R, C, ZT
-	1350	88	AT, R, ZT
	1400	88	AT, R, ZT

 $\label{eq:Key:AT=Al_2TiO_3} Key: \ AT=Al_2TiO_3, \ R=TiO_2 \ (rutile), \ C=\alpha-Al_2O_3 \ (corundum), \\ BA=BaAl_2O_4, \ ZT=ZrTiO_4.$

additives became small with increasing sintering temperature [Fig. 7(a)]. A microcracking phenomenon takes place during cooling from the sintering temperature, due to the unusually strong anisotropy in thermal expansion of the orthorhombic β-Al₂TiO₅ crystallites $(\alpha_a = 11.8 \times 10^{-6} \text{ K}^{-1}, \ \alpha_b = 19.4 \times 10^{-6} \text{ K}^{-1}, \ \alpha_c = 2.6 \times 10^{-6}$ K^{-1}). The thermal expansion of the specimen sintered at higher temperature was small because of the existence of more cracks due to grain growth. The sample without additives showed large hysteresis in thermal expansion. The thermal expansion coefficient of the sintered body with BaO or ZrO2 additives, obtained by sintering at 1300°C, was a little larger and the hysteresis became smaller than in the absence of additives. This may be due to the near absence of cracks in these doped sintered bodies.

3.2.3. Al₂TiO₅–ZrSiO₄ composite sintered body

Properties of the Al₂TiO₅–ZrSiO₄ composite sintered bodies were investigated for Al₂TiO₅ contents from 0 to 100 mol%. ZrSiO₄ has a high strength and a low thermal expansion.

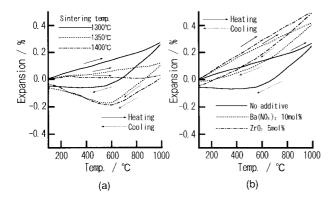


Fig. 7. Thermal expansion curves of Al_2TiO_5 ceramics. Heating and cooling rate = 5° C min⁻¹. (a) Effect of sintering temperature on Al_2TiO_5 without additives sintered for 4 h. (b) Effect of additives on Al_2TiO_5 sintered for 4 h at 1300° C.

Effects of Al₂TiO₅ content and sintering temperature on densification are shown in Fig. 8. Only in the case of sintering at 1400°C and Al₂TiO₅ contents above 60 mol%, the ZrTiO₄ phase formed. In the case of small Al₂TiO₅ content, the density following sintering at 1300–1400°C is low. This may be due to the low sinterability of ZrSiO₄ which is normally sintered at 1500–1600°C [11]. The grain size decreased with increasing ZrSiO₄ content. The fracture surface of the 80 mol% Al₂TiO₅–20 mol% ZrSiO₄ specimen sintered at 1400°C is shown in Fig. 6(f). The microstructure was finer than that of specimen without additives sintered at 1300°C [Fig. 6(a)].

The relationship between the thermal expansion coefficient over 100–1000°C and Al₂TiO₅ content is shown in Fig. 9. Below 50 mol% Al₂TiO₅, the thermal

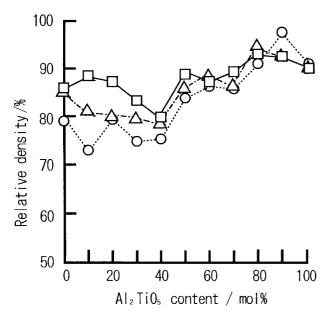


Fig. 8. Effect of composition on bulk density of Al_2TiO_5 – $ZrSiO_4$ composites sintered for 4 h. Sintering temperature: \bigcirc , $1300^{\circ}C$; \triangle , $1350^{\circ}C$; \square , $1400^{\circ}C$.

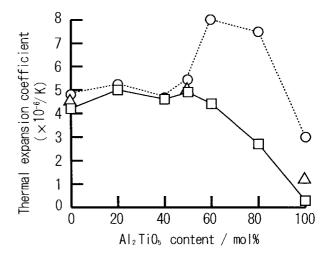


Fig. 9. Thermal expansion coefficients of Al₂TiO₅–ZrSiO₄ composites sintered for 4 h. Sintering temperature: \bigcirc , 1300°C; \triangle , 1350°C; \square , 1400°C.

expansion coefficient did not change with Al₂TiO₅ content and sintering temperature. On the other hand, above 50 mol% Al₂TiO₅, the thermal expansion coefficient decreased with increase of Al₂TiO₅ content in sintering at 1400°C. It became a maximum value at 60 mol% Al₂TiO₅ and then decreased with increase of Al₂TiO₅ content in sintering at 1300°C.

In the case of low Al₂TiO₅ content, the microstructure did not affect the thermal expansion coefficient because the main phase ZrSiO₄ shows essentially low thermal expansion. At large Al₂TiO₅ content, ZrSiO₄ grains are dispersed in the Al₂TiO₅ matrix. When sintering at 1300°C, ZrSiO₄ depressed grain growth of Al₂TiO₅ which is considered to be responsible for the large thermal expansion coefficients of 60 and 80 mol% Al₂TiO₅ composites. By sintering at 1400°C, grain growth was more pronounced, and cracks were produced at the grain boundaries. The 80 mol% Al₂TiO₅–20 mol% ZrSiO₄ composites had a fine microstructure with 93% of theoretical density and low thermal expansion, 2.7×10⁻⁶ K⁻¹.

3.2.4. Thermal decomposition of Al_2TiO_5

Al₂TiO₅ ceramics decomposed into α-Al₂O₃ and TiO₂ (rutile) below 1280°C. It was reported that the decomposition rate was fastest between 1100 and 1180°C [12–15]. In the present study, the sintered specimens were heated at 1100°C. The thermal decomposition curves are shown in Fig. 10. The specimen sintered at 1300°C without additives decomposed about 75% in 8 h, but in Ba(NO₃)₂, ZrO₂ or ZrSiO₄ added sinters, decomposition was depressed markedly. For the specimen with 80 mol% Al₂TiO₅–20 mol% ZrSiO₄ was sintered at 1400°C, the decomposition was not detected in 8 h. Kato et al. [12] reported that the decomposition process is nucleation and growth-controlled and that nucleation at the grain boundaries of sintered samples is

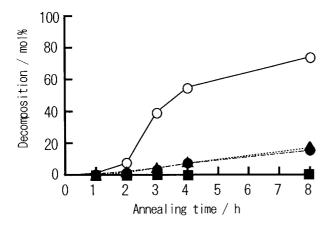


Fig. 10. Effect of isothermal (1100° C) annealing time on the decomposition of Al₂TiO₅. Key: \bigcirc , no additive, sintered at 1300° C; \bigcirc , 10 mol% Ba(NO₃) addition, sintered at 1300° C; \bigcirc , 5 mol% ZrO₂ addition, sintered at 1300° C; \bigcirc , 80 mol% Al₂TiO₅–20 mol% ZrSiO₄, sintered at 1400° C.

favored by densification. The decomposition in these doped sintered bodies would be depressed by the decrease of cracks at grain boundaries and the stabilization of grain surfaces by covering them with BaAl₂O₄, ZrTiO₄ or ZrSiO₄.

4. Conclusions

1. Al_2TiO_5 powder prepared by a homogeneous precipitation method was sintered at 1300 to 1500°C. The precipitation conditions were [urea] = 10.0 mol dm⁻³, [TiOSO₄] = [$Al_2(SO_4)_3$] = 0.01 mol dm⁻³ (A) and 0.025 mol dm⁻³ (B) and temperature = 90°C. Formation of the Al_2TiO_5 phase was confirmed by heating at 1000°C for powder (A) and at 1300°C for powder (B).

By sintering powder (A) at 1400 and 1500°C, grains grew markedly and cracks were observed at grain boundaries. Specimens sintered at 1300°C using powder calcined at 1000°C had 92% TD and a fine microstructure with about 2 μm grains. The high sintered density and fine microstructure are probably due to Al₂TiO₅ phase produced in the calcination at 1000°C which served as nuclei to promote reaction in sintering.

Powder (B) gave sintered densities above 90% TD at 1400 and 1500°C while below 70% TD at 1300°C. Sintering at 1500°C resulted in large grains and many cracks in the sintered bodies. Sintering at 1400°C of powder previously calcined at 1000°C gave a sintered body having fine grain sizes with 94% TD.

2. An Al₂TiO₅ powder prepared by coprecipitation was sintered and the effect of additives on the microstructure of sintered body was investigated. The addition of ZrO₂ or BaO was very effective for suppressing grain growth, and led to dense sintered bodies having a fine microstructure consisting of about 1 μm grains.

BaAl₂O₄ or ZrTiO₄ phase formed during sintering depressed grain growth. With BaO or ZrO₂ addition, the thermal expansion coefficient of the sintered bodies became a little larger, but the hysteresis became small. Composite sintered at 1400°C with 80 mol% Al₂TiO₅–20 mol% ZrSiO₄ has a fine microstructure and relatively low thermal expansion. BaO, ZrO₂ and ZrSiO₄ depressed thermal decomposition of Al₂TiO₅ at 1100°C.

Acknowledgements

This research was supported in part by a grant from a Grand-in-Aid for Scientific Research from the Japanese Ministry of Education, Science and Culture (no. 06650968). The energy-dispersion X-ray microanalyzer at the Center of Advanced Instrumental Analysis, Kyushu University was used for elemental analysis.

References

- [1] K. Hamano, Aluminum titanate ceramic, Taikabutu 27 (1975) 520-527.
- [2] Y. Ohya, K. Hamano, Z. Nakagawa, Microstructure and mechanical strength of aluminum titanate ceramics prepared from synthesized powders, Yogyo-kyokai-shi 91 (1983) 289–297.
- [3] Y. Ohya, K. Hamano, Z. Nakagawa, Effects of some additives on microstructure and bending strength of aluminum titanate ceramics, Yogyo-kyokai-shi 94 (1986) 665–670.
- [4] K. Hamano, Z. Nakagawa, K. Sawano, Y. Hasegawa, Effects of additives on several properties of aluminum titanate ceramics, J. Chem. Soc. Jpn. 1981 (1981) 1647–1655.
- [5] D.S. Perera, Reaction-sintered aluminium titanate, J. Mater. Sci. Lett. 8 (1989) 1057–1059.
- [6] F.J. Parker, R.W. Rice, Correlation between grain size and thermal expansion for aluminum titanate materials, J. Am. Ceram. Soc. 72 (1989) 2364–2366.
- [7] M. Kajiwara, Sintering and properties of stabilized aluminium titanate, Br. Ceram. Trans. J. 86 (1987) 77–80.
- [8] H. Wholfromm, J.S. Moya, P. Pena, Effect of ZiSiO₄ and MgO additions on reaction sintering and properties of Al₂TiO₅-based materials, J. Mater. Sci. 25 (1990) 3753–3764.
- [9] T. Yano, N. Nagai, M. Kiyohara, K. Saito, N. Ootsuka, Thermal and mechanical properties of aluminumtitanate—mullite composites: 1. Effects of composition, Yogyo-kyokai-shi 94 (1986) 970–976.
- [10] H. Morishima, Z. Kato, K. Uematsu, K. Saito, T. Yano, N. Ootsuka, Development of aluminum titanate-mullite composite having high thermal shock resistance, J. Am. Ceram. Soc. 69 (1986) C226-C227.
- [11] T. Itoh, Zircon ceramics prepared from hydrous zirconia and amorphous silica, J. Mater. Sci. Lett. 13 (1994) 1661–1663.
- [12] E. Kato, K. Daimon, J. Takahashi, Decomposition temperature of β-Al₂TiO₅, J. Am. Ceram. Soc. 63 (1980) 355–356.
- [13] E. Kato, Y. Kobayashi, K. Daimon, Factors affecting decomposition rate of Al₂TiO₅, Yogyo-kyokai-shi 86 (1987) 626–631.
- [14] T. Kameyama, T. Yamaguchi, Kinetic studies on the eutectoid decomposition of Al₂TiO₅, Yogyo-kyokai-shi 84 (1976) 589–593.
- [15] H.A.J. Thomas, R. Stevens, Aluminium titanate—a literature review: 1. Engineering properties and thermal stability, Br. Ceram. Trans. J. 88 (1989) 184–190.