

Ceramics International 26 (2000) 877–881

The reaction sequence and dielectric properties of BaSm₂Ti₄O₁₂ ceramics

Ping-Shou Cheng a, Cheng-Fu Yang b,*, Ying-Chung Chen a, Wen-Cheng Tzou a

^aDepartment of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC ^bDepartment of Electronic Engineering, Chinese Air Force Academy, PO Box 90277-4, Kangshan, Kaohsiung, Taiwan 82012, ROC

Received 13 July 1999; received in revised form 26 August 1999; accepted 3 January 2000

Abstract

To establish the correct reaction sequence of BaO–Sm₂O₃–4TiO₂, phases present in different calcining temperatures are identified by X-ray diffraction patterns. When different calcining temperatures are used, the source phase BaO (BaCO₃) consumes below 850°C, the source phases TiO₂ and Sm₂O₃ consume at 1000 and 1150°C; the intermediate phases BaTiO₃, BaTi₄O₉, and Sm₂Ti₂O₇ consume at 1050, 1200, and 1250°C, respectively. The BaSm₂Ti₄O₁₂ phase starts to reveal at the 1100°C-calcined powder. The integrating intensity of BaSm₂Ti₄O₁₂ phase increases with the raising of calcining temperatures, accompanying with the decrease of integrating intensities of the source and intermediate phases. As the sintering temperature increases, the densities, quality values, and dielectric constants of BaSm₂Ti₄O₁₂ ceramics increase and saturate at 1325°C. The BaSm₂Ti₄O₁₂ ceramics sintered at 1325°C have the properties of $Q^*f = 5180$, $\varepsilon_r = 81.8$, and $\tau_f = -19.2$ ppm/°C. © 2000 Elsevier Science Limited and Techna S.r.l. All rights reserved.

Keywords: C: Dielectric properties; BaSm₂Ti₄O₁₂ ceramics; Reactions

1. Introduction

Microwave dielectric ceramics with a high dielectric constant are needed to satisfy very high technical demands. They should possess extremely low loss to achieve high quality factor (Q), a small temperature coefficient of resonant frequency (τ_f) , and a dielectric constant higher than 80. The dielectric constant of rutile TiO₂ was high, about 104, but it has a τ_f value of $\sim +427$ ppm/ $^{\circ}$ C. Because of the high τ_f values the TiO₂ was not suitable for real application. Many ceramic dielectrics developed so far for microwave application were composed of mixed phases consisting of TiO2-based compounds in multicompoent systems. (Zr,Sn)TiO₄ [1], Ba(Zn,Mg)_{1/3}Ta_{2/3}O₃ components [2], and a series of complex perovskite families of BaTi₄O₉ and Ba₂Ti₉O₂₀ [3], satisfied the above requirements. High permittivity microwave ceramics were also obtained in the solid solution series $Ba_{6-x}Re_{8+2/3x}$ $Ti_{18}O_{54}$ [4,5], where the x value depended on the lanthanide (Re). In the BaO-Re₂O₃-nTiO₂ system the ceramics composition was the most important parameter in tailoring of its microwave

properties. The BaO–Re₂O₃–4TiO₂ ceramics (Re=Sm, Nd, and Gd) were developed based on Ba_{6-x}Re_{8+2/3x} Ti₁₈O₅₄ ternary compound known as microwave resonator material corresponds exactly to x=0.5 [6].

In the ternary BaO-Sm₂O₃-nTiO₂, the occurrence of six ternary compounds had been reported. The BaO-Sm₂O₃-4TiO₂ was a promising dielectric in microwave regions, there remains some uncertainty concerning the occurrence of a ternary compound with higher TiO₂ content in this system, i.e., 1:1:4 or 1:1:5 [6,7], and the later could be supposed from the experimental results obtained in the identical BaO-Sm₂O₃-nTiO₂ system. The coprecipitation method is one of the most popular and convenient procedures to prepare homogeneous powders. In order to minimize the compositional deviation from stoichiometry, the coprecipitation method that we had established in the studies of the BaO-Sm₂O₃-4TiO₂ system. Unfortunately, very few studies had been conducted on the powder preparation and controlled fabrication of the mixed phase dielectrics in such complicated BaO-Sm₂O₃-4TiO₂ systems. In the BaO-Re₂O₃-4TiO₂ system only Takahashi et al. developed the reaction sequence [8]. In this study, the reaction sequence of BaO-Sm₂O₃-4TiO₂ composition was developed. The sintering characteristics and the microwave

^{*} Corresponding author. Fax: +886-7-611-4536. *E-mail address:* cfyang@cc.cafa.edu.tw (C.-F. Yang).

dielectric properties of BaO–Sm₂O₃–4TiO₂ systems were also developed in this study.

2. Experimental procedures

Samples were prepared from reagent-grade BaCO₃, Sm₂O₃ (cubic), and TiO₂ (anatase). The powders were weighted according to the ratio $BaO:Sm_2O_3:TiO_2 = 1:1:4$ (mol ratio), which was equivalent to a composition of Ba-Sm₂O₃-4TiO₂. The powders were milled in a plastic jar with deionized water for 8 h, then the powders were dried and ground to force through a 250-mesh sieve. These powders were then heated for 4 h from 850 to 1300°C at a step of 50°C. After crushing and grinding, the crystalline phases of calcining powders were determined by X-ray diffraction patterns (XRD). XRD patterns were taken at $2\theta = 4^{\circ}$ per min using CuK_{α} radiation. For sintering, the mixed powders were calcined at 1100°C were used as the base composition. After grinding and sieving, the powders were pressed to form pellets and then the pellets were sintered at 1275~1375°C for 6 h. Crystalline phases of the sintered BaSm₂Ti₄O₁₂ ceramics were also investigated using XRD patterns. The densification behaviors of the BaSm₂Ti₄O₁₂ ceramics as a function of sintering temperature were evaluated by determining the bulk density using the Archimedes method. The microstructures of sintered samples were directly observed from the scanning electronic micrograph (SEM). Dielectric properties at microwave frequencies (7.25~9.31 GHz) were evaluated by the modified Hakki-Coleman dielectric resonator method [9]. For convenience, the Q^*f -factor was used for evaluating the loss quality, where f was the resonant frequency. The temperature change of the resonant frequency $\Delta f_{\rm o}/f_{\rm o}$ and temperature coefficient of resonant frequency τ_f were defined as follows.

$$\Delta f_{\rm o}/f_{\rm o} = (f_{\rm T} - f_{\rm o})/f_{\rm o} \tag{1}$$

where f_T and f_o are the resonant frequency at 85 and 0° C, respectively.

$$\tau_{\rm f} = \Delta f_{\rm o} / (f_{\rm o}^* \Delta T) \tag{2}$$

3. Results and discussion

The conventional solid-state-reaction process for synthesizing BaSm₂Ti₄O₁₂ compounds were commonly based on the following reaction:

$$BaCO_3 + Sm_2O_3 + 4TiO_2 \rightarrow BaSm_2Ti_4O_{12}$$
 (3)

However, the real solid reaction processes are usually more complex, and some intermediate reaction phases might happen. The XRD patterns of $BaO-Sm_2O_3-4TiO_2$ powders calcined at various temperatures are shown in Fig. 1, and the phase analyses are summarized in Table 1. As various calcining temperatures are used, various phases are observed in calcined $BaO-Sm_2O_3-4TiO_2$ powders. Calcining $BaO-Sm_2O_3-4TiO_2$ powder at $850^{\circ}C$ the source phases of TiO_2 and Sm_2O_3 are residual, and TiO_2 and Sm_2O_3 consume ("consume" means that the higher temperature can find the composition) at 1000 and $1150^{\circ}C$, respectively. The $BaTiO_3$, $BaTi_4O_9$, and $Sm_2Ti_2O_7$ start to reveal at 850-, 850-, and $900^{\circ}C$ -calcining powders. These results suggest that the intermediate phases of $BaTiO_3$, $BaTi_4O_9$, and $Sm_2Ti_2O_7$ form before the $BaSm_2Ti_4O_{12}$ phase. Proceeding calcination at $1100^{\circ}C$ the $BaSm_2Ti_4O_{12}$ forms and coexists with the

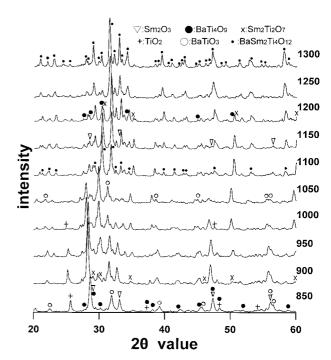


Fig. 1. The crystalline phases of the calcined $BaO-Sm_2O_3-4TiO_2$ powder.

Table 1 The phases of calcined BaSm₂Ti₄O₁₂ powders^a

Temperature (°C)	Sm ₂ O ₃	BaTiO ₃	TiO ₂	BaTi ₄ O ₉	Sm ₂ Ti ₂ O ₇	BaSm ₂ Ti ₄ O ₁₂
850	0	0	0	0	X	X
900	Ö	O	Ö	O	0	X
950	0	0	O	0	0	X
1000	O	0	O	0	O	X
1050	O	0	X	0	O	X
1100	O	0	X	0	O	O
1150	O	0	X	O	O	O
1200	X	X	X	O	O	O
1250	X	X	X	X	X	O
1300	X	X	X	X	X	0

a O, exist; X, not exist.

source phases (Sm_2O_3) and the intermediate phases $(BaTi_4O_9)$ and $Sm_2Ti_2O_7$. Further raising the calcining temperature, the intermediate phases $BaTiO_3$ consumes at $1150^{\circ}C$. Even though $1200^{\circ}C$ is used as the calcining temperatures, the $BaTi_4O_9$ and $Sm_2Ti_2O_7$ phases are still residual. The XRD pattern of powder calcined at $1300^{\circ}C$ is similar to one calcined at $1250^{\circ}C$, and only one crystalline phase of $BaSm_2Ti_4O_{12}$ is revealed as the calcined temperature is higher than $1250^{\circ}C$.

Fig. 2 shows the integrating intensity of all phases revealing at the calcining temperatures of 850~1300°C. As Fig. 2 shows, the integrating intensities of Sm₂O₃ and TiO₂ phases decrease with the raise of calcining temperatures. The integrating intensities of BaTiO₃, BaTi₄O₉, and Sm₂Ti₂O₇ phases first increase with the calcining temperature. The integrating intensities of BaTiO₃, BaTi₄O₉, and Sm₂Ti₂O₇ phases reach a maximum at 900, 950, and 1100°C, respectively, then decrease with the raise of calcining temperatures. The integrating

intensity of $BaSm_2Ti_4O_{12}$ phase first reveals at $1100^{\circ}C$, increases with the calcining temperature, and then saturates at about $1250^{\circ}C$. In the range of $1100{\sim}1250^{\circ}C$ the intensity of $BaSm_2Ti_4O_{12}$ phase increases accompanying with the decrease of intensities of $BaTi_4O_9$ and $Sm_2Ti_2O_7$ phases. These results suggest that the formation of $BaSm_2Ti_4O_{12}$ phase is at the consumption of the $BaTi_4O_9$ and $Sm_2Ti_2O_7$ phases. From Figs. 1 and 2, the reaction sequence to form $BaSm_2Ti_4O_{12}$ can be summarized as:

$$BaCO_3 \rightarrow BaO + CO_2$$
 (4)

$$BaO + TiO_2 \rightarrow BaTiO_3$$
 (5)

$$BaTiO_3 + 3TiO_2 \rightarrow BaTi_4O_9$$
 (6)

$$Sm_2O_3 + 2TiO_2 \rightarrow Sm_2Ti_2O_7 \tag{7}$$

$$Sm_2Ti_2O_7 + BaTi_4O_9 \rightarrow BaSm_2Ti_4O_{12}$$
 (8)

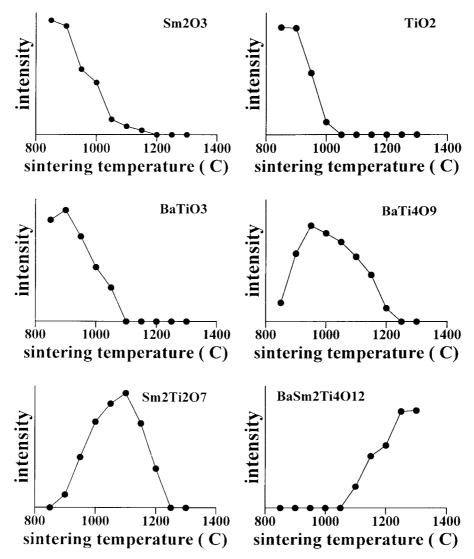


Fig. 2. The integrating intensity of all phases.

This was consistent with the previous reports. When the calcining temperatures were higher than 1250° C, some minor phases may be existed in the calcined powder, however, they could not be differentiated from the major phase of $BaSm_2Ti_4O_{12}$ because of overlapping with the mainly crystalline phase.

In this study, the powder calcined at 1100°C is used as the initial $BaSm_2Ti_4O_{12}$ powder for sintering. The XRD patterns of $BaSm_2Ti_4O_{12}$ pellets sintered at 1275 to 1375°C are shown in Fig. 3, these results are similar to the powders calcined at temperatures higher than 1250°C. During sintering, the intermediate phases of $BaTiO_3$, $BaTi_4O_9$, and $Sm_2Ti_2O_7$ all consume and only the $BaSm_2Ti_4O_{12}$ phase is left. It also notes that the some peak-intensity of $BaSm_2Ti_4O_{12}$ phase increases with the raising of sintering temperature.

Fig. 4 reveals the as-sintered surfaces at two different sintering temperatures. As 1325°C is used as the sintering temperature, the main crystals are bar-shaped grains

with the occasional appearance of block-shaped grains, as Fig. 4(a) shows. With the raise of sintering temperature from 1325 to 1350°C, as Fig. 4(b) shows, the length of the bar-shaped grains tends to increase and the small block-shaped grains decreases. The bulk density of samples sintered at 1275~1375°C are shown in Fig. 5, showing that the bulk density has maximum values at temperatures around 1350°C. Either higher or lower sintering temperatures may cause the bulk density to decrease. As sintering temperatures are lower than 1350°C, the decrease of the porosity may cause this result; As 1375°C is used as the sintering temperature, long grains grow at the expense of short ones, which result in the formation of new and larger voids where the short grains are originally located. As the long bar grains come into contact, continual growth push them away from one another, which causes expansion of the sintered compacts and results in decreases in bulk densities.

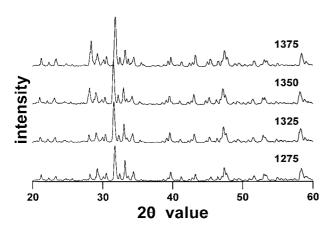


Fig. 3. The XRD patterns of sintered BaSm₂Ti₄O₁₂ ceramics.

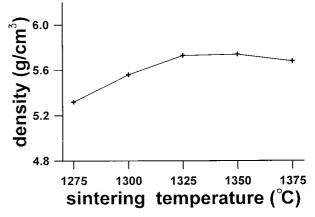


Fig. 5. The density of sintered $BaSm_2Ti_4O_{12}$ ceramics as a function of sintering temperatures.

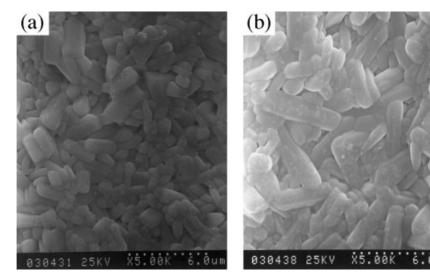


Fig. 4. The micrographs of sintered $BaSm_2Ti_4O_{12}$ ceramics: (a) sintered at $1325^{\circ}C$ and (b) sintered at $1350^{\circ}C$.

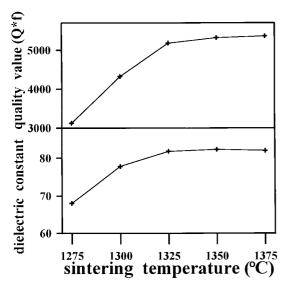


Fig. 6. The dielectric constant (ε_r value) and quality (Q^*f) values of the BaSm₂Ti₄O₁₂ ceramics as a function of sintering temperature.

The dielectric constant ($\varepsilon_{\rm r}$ value) and quality values (Q^*f) of the BaSm₂Ti₄O₁₂ ceramics are estimated as a function of sintering temperature and the results are shown in Fig. 6. For BaSm₂Ti₄O₁₂ ceramics, the ε_r values increase with the raise of sintering temperature. It maybe caused by that the densities increase with the raise of sintering temperature. The Q^*f values of BaSm₂Ti₄O₁₂ ceramics also increase with the raise of sintering temperatures and saturate at about 1325°C. The increase of Q^*f values with the raise of sintering temperature maybe caused by the larger grain growth and the more uniform in grain size. Because as the grain size increases, the pores and grain boundary area decreases, that will reduce the lattice imperfections and than increase the Q^*f values. However, such significant changes in dielectric properties are hardly explained only by the lattice imperfection or boundary defects. In this study, 1325°C is enough to sinter BaSm₂Ti₄O₁₂ ceramics, because the microwave characteristics of BaSm₂Ti₄O₁₂ ceramics saturate at about 1325°C. For example, the temperature coefficient of resonant frequency (τ_f) of BaSm₂Ti₄O₁₂ ceramics sintered at 1325, 1350, and 1375°C are -19.2, -18.9, and -18.8 ppm/°C, respectively.

4. Conclusions

- a. 1100°C is enough for BaO–Sm₂O₃–4TiO₂ powder to form BaSm₂Ti₄O₁₂ phase.
- b. Using $1275^{\circ}C$ as the sintering temperature of the $1100^{\circ}C$ -calcined BST powder the source phase Sm_2O_3 and TiO_2 and the intermediate phases $BaTiO_3$, $BaTi_4O_9$, and $Sm_2Ti_2O_7$ consume. Only the single $BaSm_2Ti_4O_{12}$ phase is revealed in the sintered ceramics.
- c. The densities and the microwave characteristics (dielectric constant, quality value, and τ_f values) of BaSm₂Ti₄O₁₂ ceramics saturate at about 1325°C, i.e. 1325°C is enough to sinter BaSm₂-Ti₄O₁₂ ceramics.

References

- R. Christoffersen, P.K. Davies, X. Wei, Effect of Sn substitution on cation ordering in (Zr_{1-x}Sn_x)TiO₄ microwave dielectric ceramics, J. Am. Ceram. Soc. 77 (1994) 1441–1450.
- [2] S.B. Desu, H.M. O'Bryan, Microwave loss quality of Ba(Zn,Mg)_{1/3}Ta_{2/3}O₃ ceramics, J. Am. Ceram. Soc. 68 (1985) 546–551.
- [3] T. Negas, G. Yeager, S. Bell, N. Coats, BaTi₄O₉/Ba₂Ti₉O₂₀-based ceramics resurrected for modern microwave applications, Am. Ceram. Soc. Bull. 72 (1993) 80–89.
- [4] H. Ohsato, T. Ohhashi, H. Kato, S. Nishigaki, T. Okuda, Microwave dielectric properties and structure of the Ba_{6-x}Sm_{8+2/3x} Ti₁₈O₅₄ solid solutions, Jpn J. Appl. Phys. 34 (1995) 187–191.
- [5] P. Laffez, G. Desgardin, B. Raveau, Microwave dielectric properties of doped Ba_{6-x}(Sm_{1-y},Nd_y)_{8+2x/3}Ti₁₈O₅₄ oxides, J. Mater. Sci. 30 (1995) 267–273.
- [6] S. Nishigaki, H. Kato, S. Yano, R. Kamimura, Microwave dielectric properties of (Ba,Sr)O-Sm₂O₃-TiO₂ ceramics, Am. Ceram. Soc. Bull. 66 (1987) 1405–1410.
- [7] H. Ohsato, S. Nishigaki, T. Okuda, Superlattice and dielectric properties of BaO-R₂O₃-TiO₂ (R=La, Nd and Sm) microwave dielectric compounds, Jpn J. Appl. Phys. 31 (1992) 3136– 3138.
- [8] J. Takahashi, T. Ikegami, Occurrence of dielectric 1:1:4 compound in the ternary system BaO–Ln₂O₃–TiO₂ (Ln = La, Nd, and Sm), J. Am. Ceram. Soc. 74 (1991) 1868–1872.
- [9] W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators, IEEE. Trans. MTT 18 (1985) 476–485.