

LSEVIER Ceramics International 27 (2001) 157–162

Effect of glass composition on the densification and dielectric properties of BaTiO₃ ceramics

Sea-Fue Wang a,*, Thomas C.K. Yang b, Yuh-Ruey Wang a, Yoshirou Kuromitsu c

^aDepartment of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC

^bDepartment of Chemical Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC

^cMitsubishi Materials Corporation Central Research Institute, Omiya, Saitama, Japan

Received 3 March 2000; received in revised form 25 April 2000; accepted 12 June 2000

Abstract

An ongoing research goal of thick film capacitors and multilayer capacitors is to lower the firing temperature of the dielectrics. This paper presents the results of using three simple glass systems including PbO–B₂O₃, PbO–SiO₂, and Bi₂O₃–B₂O₃ as sintering aids for hydrothermal synthesized BaTiO₃. Glasses with different ratios of the modifier/glass former were employed. Effects of adding these glass systems on the BaTiO₃ ceramics sintered at 850°C were investigated through measuring and analyzing the density, grain size and dielectric property. It was found that BaTiO₃ sintered with glasses composed of 90 mol% PbO–10 mol% SiO₂ or 90 mol% PbO–10 mol% B₂O₃ to 60 mol% PbO–40% B₂O₃ are helpful to reduce the firing temperature for typical thick film and MLCC applications. They possess high dielectric constant (\approx 1650) due to their high densification characteristics with the grain size of \approx 0.7 µm. In addition, glasses composed of 90 mol% Bi₂O₃–10 mol% B₂O₃ to 40 mol% Bi₂O₃–60 mol% B₂O₃ are beneficial for thin dielectric layer applications, on account of the high sintering density and a small grain size of \approx 0.1 µm with an acceptable *K* value. © 2001 Elsevier Science Ltd and Techna S.r.l. All rights reserved.

Keywords: C. Dielectric properties; D. BaTiO₃ ceramics; Densification

1. Introduction

Barium titanate (BaTiO₃) is a well-known material for multilayer ceramic and thick film capacitors because of its high dielectric constant. The trends of electronic packaging are toward miniaturization and cost saving. Lowering the sintering temperature of BaTiO₃ is required in multilayer ceramic capacitor (MLCC) technology in order to use relatively inexpensive internal electrodes such as Ag/Pd (silver/palladium), and also in thick film capacitor technology for achieving compatibility with other thick film components [1–5]. The addition of a fluxing agent such as glass with BaTiO₃ is an effective method which promotes densification by liquid phase sintering at low temperatures. Therefore, numerous kinds of glasses have been developed as sintering aids for BaTiO₃ [6–13].

E-mail address: seafuewang@yahoo.com (S.-F. Wang).

Glass-sintered BaTiO₃, however, may not always result in the desired dielectric properties. This is especially true if the dielectric constant, K, is lowered by the presence of a continuous low-K grain boundary phase. In order to obtain materials with a high K, key steps are to tailor the glass composition to produce densification with limited grain growth and to reduce the volume fraction of low-K second phases and porosity [7]. Another important factor is to control the substitutions in the BaTiO₃ lattice. The glass may act as a fluxing agent for liquid-phase sintering as well as a modifier of the dielectric properties if the glass component is incorporated into the BaTiO₃ lattice [7,12,14–16]. The extent of incorporation and the distribution of the incorporated atoms may alter the Curie point temperature, the sharpness of the transition, and the volume fraction of the low-K second phase. Therefore, glass compositions and chemical interactions between BaTiO₃ and glasses are very important parameters in characterizing, understanding, and controlling their dielectric properties.

Burn [7] studied the grain growth behavior of fluxsintered BaTiO₃, focusing on both binary and ternary glass systems. He showed that the grain growth of the

^{*} Corresponding author at present address: National Taipei University of Technology, Department of Materials and Mineral Resources Engineering, 1, Sec. 3, Chung-Hsiao E. Road Taipei, Taiwan, ROC. Fax: +886-2-2731-7185.

BaTiO₃ occurred only for specific ratios of glass formers and modifiers in the glass, which could be correlated to charge neutrality in the titanate lattice. A careful control of the cation stoichiometry is necessary for grain growth to occur. Grain growth is a factor which controls the extent of the modifier incorporated into the BaTiO₃ lattice and the volume of the liquid phase after sintering. Generally, commercially available glasses for low-fired BaTiO₃ are very complex and their formulations are primarily based on the empirical knowledge. Therefore, only limited information on the glass nature and its interaction with BaTiO₃ is available in the literature. In the previous study [17], the interactions between BaTiO₃ and simple glasses including PbO-B₂O₃, PbO-SiO₂, and Bi₂O₃-B₂O₃ systems were studied through the reaction of BaTiO₃ powder with glass powder. For PbO-B₂O₃ and PbO-SiO₂ glasses, the reaction led to a stable compound formation, the substitution of Pb in the BaTiO₃ structure, and a noticeable grain growth of BaTiO₃. The substitution of Pb into BaTiO₃ is assisted by chemical reactions in which BaB₂O₄ or Ba₂SiO₄ is formed. The substitution in BaTiO₃ also seems to be closely related to the grain growth of BaTiO₃. On the other hand, compound formation was observed only during the processing of BaTiO₃ with the Bi₂O₃–B₂O₃ glass system.

In order to investigate the influence of the glass additives on the densification, the microstructural evolution and the dielectric properties of BaTiO₃ ceramics, different modifier/glass former ratios of PbO–B₂O₃, PbO–SiO₂, and Bi₂O₃–B₂O₃ glass systems were used as sintering aids for a commercial hydrothermal synthesized BaTiO₃ powders. Effects of the glass systems on BaTiO₃ sintered at 850°C were investigated by measuring and analyzing the sintered density, grain size and dielectric properties.

2. Experimental procedure

2.1. Material

Hydrothermally derived $BaTiO_3$ powder (Sakai Chemical: BT-01) was used throughout this study. As shown in Fig. 1, the $BaTiO_3$ particle size was approximately 0.1 μ m with a narrow particle size distribution. An XRD analysis of this raw material indicated a cubic structure at room temperature. Chemical analysis of this hydrothermally derived $BaTiO_3$ indicated only a very minor amount of impurities.

2.2. Glass preparation

Three binary glass systems with various ratios of glass modifier to glass former — 10 mol% PbO-90 mol% B₂O₃ to 90 mol% PbO-10 mol% B₂O₃, 50 mol% PbO-

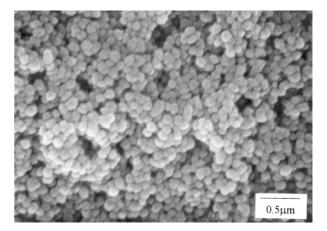


Fig. 1. SEM micrograph of as-received hydrothermal BaTiO₃.

50 mol% SiO₂ to 90 mol% PbO–0 mol% SiO₂, and 10 mol% Bi₂O₃–90 mol% B₂O₃ to 90 mol% Bi₂O₃–10 mol% B₂O₃ (Fisher Scientific, reagent grade)—were chosen for the glass compositions. These glasses are commonly used as fluxing agents in thick film materials and MLCCs. In the PbO–SiO₂ system, glasses with SiO₂ content greater than 50 mol% were not used because of their high melting temperatures.

Calculated amounts of reagent-grade chemicals (PbO, Bi₂O₃, SiO₂, and H₃BO₃) for the various glass compositions were weighed, mixed, and melted in platinum crucible in an air atmosphere at 1000°C for 5 h. The molten glasses were quenched on a platinum plate cooled by water and were then crushed in an agate bowl. Each crushed glass sample was sieved to pass through a 325 mesh screen. Although some compositions of glasses, particularly those containing a high amount of B₂O₃, PbO, or Bi₂O₃, did not produce a glassy phase, every sample was designated as a glass sample throughout this study. Chemical analyses carried out for each glass system indicated that impurities (0.1 wt.% or greater) were not introduced into the glass during the preparation procedure.

2.3. Sample preparation

90 mol% of hydrothermal derived BaTiO₃ and 10 mol% of glass powders were mixed thoroughly in an agate bowl. To prepare the powder for pressing, they were mixed with 3 wt.% of 15% PVA solution, dried, pulverized using a mortar and pestle, and then sieved through a 120 mesh screen. Disks with 10 mm in diameter and 1.5 mm in thickness were prepared by uniaxial pressing at 100 MPa. The green densities of the pressed samples, determined from their dimension, was 48–52% of theoretical density. For binder burnout, the disks were fired at 500°C for 2 h before they were sintered in a closed crucible at temperature of 850°C for periods of 30 min to 12 h. A soaking temperature of 850°C was used throughout this study because it is a

common firing temperature for thick film circuitry. A 10° C/min heating rate and 10° C/min cooling rate was used for all cases.

2.4. Characterization

Bulk density measurements were made using the Archimedes technique. Xylene was used as the liquid medium for specimens of 90% T.D. or higher, and distilled water was used for more porous specimens. For each type of samples, density measurements were carried out by averaging the data for at least three specimens. Microstructures of the ceramics were studied on the asfired surfaces of the sintered ceramics using SEM with an accelerating voltage of 25 kV. Average grain size were determined using a linear intercept method.

Dielectric measurements were performed on plane parallel disks approximately 1 mm thick. Pt electrodes were sputtered onto the surface in a vacuum through a mask. Dielectric properties were measured as a function of temperature and frequency using a Hewlett-Packard 4274 LCR bridge and a low temperature Delta Design box furnace. An alternating voltage of 1 V was applied. Measurements were taken at a frequency of 1000 Hz.

3. Results and discussion

Three simple glass systems including PbO–B₂O₃, PbO–SiO₂, and Bi₂O₃–B₂O₃ commonly have been used as sintering aids for low-fired dielectrics, thick film components and low-fired multilayer monolithic substrates. The effects of glass constituents on the sintered BaTiO₃ ceramics are correlated with their densification, grain growth behavior and dielectric properties. Fig. 2 shows the densification of hydrothermal BaTiO₃ sintered with 70 mol% PbO–30 mol% B₂O₃ and 30 mol%

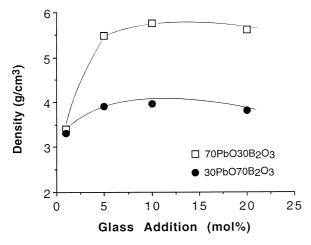


Fig. 2. Densification of hydrothermal BaTiO $_3$ sintered with 70 mol% PbO-30 mol% B $_2$ O $_3$ and 30 mol% PbO-70 mol% B $_2$ O $_3$ glasses at 850°C for 2 h.

PbO-70 mol\% B2O3 glasses at 850°C for 2 h. It indicates that the densification of BaTiO₃ depends not only on the amount of glass addition but also on the glass former content. It is apparent that, with the same amount of glass addition, BaTiO₃ sintered with 70 mol% PbO-30 mol% B₂O₃ shows a better densification compared with that sintered with 30 mol% PbO-70 mol\% B₂O₃. This is probably due to the better fluidity and the higher reactivity (better wettability) of the glass with the higher PbO content. They enhance the particle rearrangement and solution-reprecipitation during liquid phase sintering, causing a rapid densification [18,19]. For both glasses, the densification of BaTiO₃ increased as the addition of the glass raised up to 10 mol%. A further increase in the glass content does not improve the densification. Therefore, formulations of BaTiO₃ with the addition of 10 mol% glass were used throughout the rest of this study.

In order to clarify the effects of the glass modifier to the glass former ratio on densification, hydrothermal BaTiO₃ with 10 mol% of various glass additions were sintered at 850°C for 30 min. The densification and the grain size of the sintered ceramics with respect to the glass former (B₂O₃ or SiO₂) content in the PbO-B₂O₃, PbO-SiO₂, and Bi₂O₃-B₂O₃ glass systems are plotted in Figs. 3 and 4. It is evident that the glass former content influences significantly the densification and the grain size of the sintered ceramics. For the hydrothermal BaTiO₃ sintered with PbO-B₂O₃ glass, the sintered densities and the grain size of the BaTO₃ increased slightly with the B₂O₃ content up to 40 mol\%, then dropped rapidly as the B₂O₃ content continues to rise. In the PbO-rich region, the sintered ceramics have a density of ≈ 5.35 g/cm³ accompanied with an extensive grain growth (G.S. $\approx 0.7 \,\mu\text{m}$). At a B₂O₃ content higher than 60 mol%, the grain sizes of the sintered ceramics reduced to $\approx 0.18 \mu m$. This is probably due to the

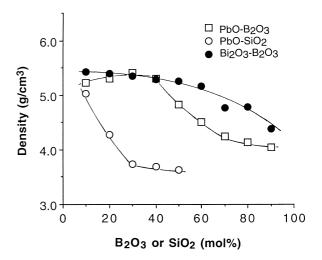


Fig. 3. Densification for hydrothermal BaTiO $_3$ sintered with 10 mol% glasses composed of various B_2O_3 or SiO_2 contents at 850°C for 30 min.

formation of BaTi(BO₃)₂ and BaB₂O₄ compounds, as reported by Kuromitsu et al. [17]. These newly formed compounds retard the densification process and inhibit the grain growth during the final stage of liquid phase sintering [18].

For the hydrothermal BaTiO₃ sintered with the PbO-SiO₂ glass system, the impact of the glass-modifier to the glass-former ratio on the densification and grain growth behavior are even more stronger than for those sintered with PbO-B₂O₃ glass, as shown in Figs. 3 and 4. The BaTiO₃ has a density of ≈ 5.05 g/cm³ and a grain size of $\approx 0.5 \, \mu \text{m}$ when sintered with 90 mol% PbO-10 mol% SiO₂. Both values declined considerably as the SiO₂ content increased. This is due to the increasing melting temperature of the glasses and the formation of Ba₂SiO₄ and Ba₂TiSi₂O₈ compounds during sintering [7,17]. Liquid phase sintering becomes less efficient while using the glasses with high melting temperatures as sintering aids. Therefore, glasses with SiO2 contents more than 50 mol% were not used in this study because of their high melting temperatures.

The impact of the glass-former content on the densification and the grain growth behavior for hydrothermal BaTiO₃ sintered with Bi₂O₃-B₂O₃ glasses are different from those sintered with PbO-B₂O₃ and PbO-SiO₂ glass systems. The densities of the ceramics were reduced gradually from ≈ 5.4 to 4.4 g/cm³ as the B₂O₃ content was raised from 10 to 90 mol%. The microstructural study indicated that very little grain growth had occurred over the entire range of glass composition, even with an increased soaking time up to 120 min. It has been reported that interactions of BaTiO₃ with Bi₂O₃-B₂O₃ glasses lead to the formation of BaBi₄Ti₄O₁₅ and BaTi(BO₃)₂ compounds. These compounds plus the high viscosity of the Bi₂O₃-B₂O₃ glass may degrade the densification as well as retard the grain growth.

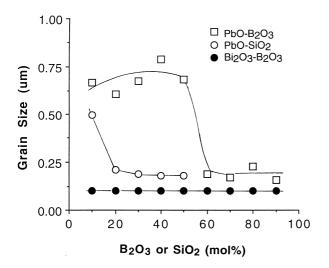


Fig. 4. Grain sizes for hydrothermal BaTiO₃ sintered with 10 mol% glasses composed of various B₂O₃ or SiO₂ contents at 850°C for 30 min.

Fig. 5 shows the dielectric constants at room temperature, measured at 1 kHz, for the hydrothermal BaTiO₃ sintered with various glasses. Comparing the results with those shown in Figs. 3 and 4, it occurs that densification, grain size, as well as the nature of the glass may influence to the dielectric constant values of sintered BaTiO₃ ceramics. For the hydrothermal BaTiO₃ sintered with PbO-B₂O₃ glass, the dielectric constant increased slightly from 1350 to 1500 as the B₂O₃ content was raised from 10 to 40 mol%, then dropped rapidly to 500 as B₂O₃ reached 60 mol%. With glasses in the PbO-rich region, the sintered BaTiO₃ is characterized by a higher dielectric constant value, which is due to the fact that a better densification has been achieved and a grain size of ≈0.7 µm has been obtained. It is known that porosity existed in the ceramics can deteriorate the dielectric properties according to the mixing rule [16,20]. In addition, researchers [20– 24] have also shown that the dielectric constant is a function of grain size. It reaches a maximum value while grain sizes are in the range of 0.6 to 0.8 µm, which can be explained by internal stress and domain wall models. As the B₂O₃ content in the glass increases, the resulting low sintering density and small grain size of BaTiO₃ led to a low dielectric constant.

For the hydrothermal BaTiO₃ sintered with PbO–SiO₂ glasses, the tendency of the dielectric constant versus the SiO₂ content coincides very well with the results of density and grain size (Figs. 3 and 4). Except in the case of 90 mol% PbO–10 mol% SiO₂, BaTiO₃ ceramics sintered with this glass system show a low density and little grain growth, resulting in a low dielectric constant.

For the BaTiO₃ ceramics sintered with Bi_2O_3 – B_2O_3 glasses, no grain growth for all B_2O_3 contents was observed. The dependence of the dielectric constant and the sintered density on the B_2O_3 content seems to follows

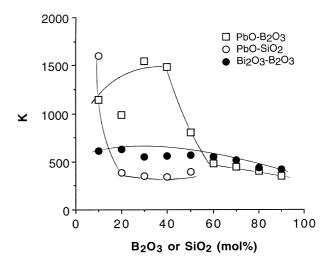


Fig. 5. Room dielectric constants, measured at 1 kHz, for hydrothermal BaTiO₃ sintered with various glasses at 850°C for 30 min.

B ₂ O ₃ or SiO ₂ (mol %)	10	20	30	40	50	60	70	80	90
PbO-SiO ₂									
PbO-B ₂ O ₃									
Bi ₂ O ₃ -B ₂ O ₃									

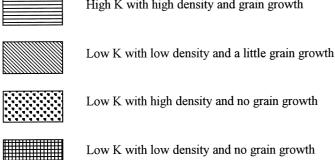


Fig. 6. Schematic diagram of the sintered density, grain size as well as dielectric constant as a function of glass former (B2O3 or SiO2) content.

a similar path. These BaTiO₃ ceramics have a higher density than those sintered with PbO–B₂O₃ and PbO–SiO₂ glass systems. Therefore, the room dielectric constants for this system (\approx 650) are expected to be higher than those sintered with other glass systems having a similar grain size.

Fig. 6 shows a schematic diagram considering the sintered density, the grain size as well as the dielectric constant. BaTiO₃ sintered with glasses composed of 90 mol% PbO-10 mol% SiO_2 or 90 mol% PbO-10 mol% B₂O₃ to 60 mol% PbO-40% B₂O₃, possess a high dielectric constant and a high density associated with significant grain growth. They are useful for typical thick film and MLCC applications, which require a high K as well as a low firing temperature [5]. As the market drives the electronic components towards miniaturization, dielectric ceramics with a small grain size are essential for thin dielectric layer applications in order to retain good reliability. Based on the current study, BaTiO₃ sintered with glasses composed of 90 mol% $Bi_2O_3-10 \text{ mol}\% B_2O_3 \text{ to } 40 \text{ mol}\% Bi_2O_3-60 \text{ mol}\%$ B₂O₃ have a high densification at 850°C with an acceptable K of 630 and a grain size of $\approx 0.1 \, \mu \text{m}$, which are favorable for uses in thin dielectric layer applications [3].

4. Summary

Three simple glass systems including PbO-B₂O₃, PbO-SiO₂, and Bi₂O₃-B₂O₃ were used as sintering aids

for hydrothermal BaTiO3. The effects of glass constituents on the BaTiO₃ ceramics are discussed with regard to densification, grain growth behavior and dielectric constant. For the hydrothermal BaTiO₃ sintered with PbO-B₂O₃ glass, densities of ≈ 5.35 g/cm³ were achieved with an extensive grain growth (G.S.≈ 0.7 µm) and room dielectric constants of \approx 1500 in the PbO-rich range. The dielectric constants dropped rapidly when the B₂O₃ content was greater than 60 mol%, due to low density and a small grain size. For the PbO-SiO₂ glass system, the sintered BaTiO₃ has a density of ≈ 5.05 g/cm³ and a grain size of ≈ 0.5 µm when sintered with 90 mol% PbO-10 mol% SiO₂. Both the density and the grain size declined considerably as the SiO₂ content increased because of the increase in the glass melting temperatures. For the BaTiO₃ ceramics sintered with Bi₂O₃-B₂O₃ glasses, good densification and no grain growth were observed. Altogether, it was found that BaTiO3 sintered with glass compositions of 90 mol% PbO-10 mol% SiO₂ or 90 mol% PbO-10 mol% B₂O₃ to 60 mol% PbO-40% B₂O₃ are useful for typical thick film and MLCC applications. In addition, glasses composed of 90 mol% Bi₂O₃-10 mol% B₂O₃ to 40 mol\% Bi₂O₃-60 mol\% B₂O₃ are beneficial for use in thin dielectric layer applications.

References

 Y. Sakabe, Recent progress on multilayer ceramic capacitors, MRS Int. Meet. Adv. Mater. 10 (1989) 119–129.

- [2] G. Goodman, Ceramic capacitor materials, in: R.C. Buchanan (Ed.), Ceramic Materials for Electronics, Marcel Dekker, New York, 1986, pp. 79–138.
- [3] S.F. Wang, G.O. Dayton, Dielectric properties of fine grained barium titanate based X7R materials, J. Am. Ceram. Soc. 82 (10) (1999) 2677–2682.
- [4] L.C. Hoffman, Crystallizable dielectrics, in: ISHM Proc., 1968, pp. 111–18.
- [5] I. Burn, L. Drozdyk, Reliability of thick film capacitors, in: ISHM Proc., 1992, pp. 439-44.
- [6] K.R. Chowdary, E.C. Subbarao, Liquid phase sintered BaTiO₃, Ferroelectrics 37 (1981) 689–692.
- [7] I. Burn, Flux-sintered BaTiO₃ dielectrics, J. Mater. Sci. 17 (5) (1982) 1398–1408.
- [8] J.M. Haussonne, G. Desgardin, P.H. Bajolet, B. Raveau, Barium titanate perovskite sintered with lithium fluoride, J. Am. Ceram. Soc. 66 (11) (1983) 801–807.
- [9] G. Desgardin, I. Mey, B. Raveau, BaLiF₃ a new sintering agent for BaTiO₃-based capacitors, Am. Ceram. Soc. Bull. 64 (4) (1985) 563–570.
- [10] A.N. Virkar, S.K. Sundaram, Studies on the effect of minor glass additives on the sintering and dielectric properties of barium titanate, Trans. Indian Ceram. Soc. 44 (4) (1985) 71–74.
- [11] S.K. Sarkar, M.L. Sharma, Liquid phase sintering of BaTiO₃ by boric oxide (B₂O₃) and lead borate (PbB₂O₄) glasses and its effect on dielectric strength and dielectric constant, Mater. Res. Bull. 24 (1989) 773–779.
- [12] S.F. Wang, C.K. Thomas, W.Huebner Young, J.P. Chu, Liquid phase sintering and chemical inhomogeneity in the BaTiO₃-BaCO₃-LiF system, J. Mater. Res. 15 (2) (2000) 407– 416
- [13] C.F. Yang, L. Wu, T.S. Wu, A new sintering agent for BaTiO₃:

- the binary BaO-CuO system, J. Mater. Sci. Lett. 11 (1992) 1246–1248.
- [14] L.M. Castwlliz, R.J. Routil, The effect of boric oxide on the properties of barium titanate based ceramic, Can. J. Ceram. Soc. 38 (1969) 69–74.
- [15] Y. Park, S.A. Song, Influence of core-shell structured grain on dielectric properties of cerium-modified barium titanate, J. Mater. Sci.: Mater. in Electronics 6 (1995) 380–388.
- [16] B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, New York, 1971.
- [17] Y. Kuromitsu, S.F. Wang, S. Yoshikawa, R.E. Newnham, Interaction between barium and binary glasses, J. Am. Ceram. Soc. 77 (2) (1994) 493–498.
- [18] R.M. German, Liquid Phase Sintering, Plenum Press, New York,
- [19] J.S. Reed, Principles of Ceramics Processing, John Wiley & Sons Inc, New York, 1995.
- [20] N. Wada, H. Tanaka, Y. Hamaji, Y. Sakabe, Microstructures and dielectric properties of fine-grained BaTiO₃ ceramics, Jpn J. Appl. Phys. 35 (1996) 5141–5144.
- [21] K. Uchino, E. Sadanaga, T. Hirose, Dependence of the crystal structure on the particle size in barium titanate, J. Am. Ceram. Soc. 72 (8) (1989) 1555–1558.
- [22] Y. Park, Y.H. Kim, H.G. Kim, The effect of grain size on dielectric behavior of BaTiO₃ based X7R materials, Mater. Lett. 28 (1996) 101–106.
- [23] G. Ark, D. Hennings, G. de With, Dielectric properties of finegrained barium titanate ceramics, J. Appl. Phys. 58 (1985) 1619– 1625
- [24] W.R. Bussen, L.E. Cross, A.K. Goswami, Phenomenological theoretical of high permitivity in fine-grained barium titanate, J. Am. Ceram. Soc. 49 (1966) 33.