

CELSEVIER Ceramics International 27 (2001) 195–199

Near net shape SiC—mullite composites from a powder precursor prepared through an intermediate Al-hydroxyhydrogel

A.K. Samanta, K.K. Dhargupta, S. Ghatak *

Central Glass and Ceramic Research Institute, 196 Raja SC Mullick Road, Calcutta 700 032, India

Received 16 February 2000; received in revised form 7 March 2000; accepted 11 April 2000

Abstract

SiC-mullite composites with low dimensional changes on sintering were fabricated by partial oxidation of SiC followed by reaction bonding using hydroxyhydrogel derived alumina keeping SiC as dispersed phase in the intermediate gel-like mass as starting material. The sintering-induced shrinkage is compensated by volume expansion caused by the silicon carbide oxidation-induced-volume expansion. This work describes a new processing route to fabricate SiC-mullite composites where in situ formation of mullite takes place that proceeds at much lower temperatures ($\leq 1600^{\circ}$ C) than in normal ceramics processing routes. Specimens containing Al₂O₃ $\leq 40\%$ are not suitable due to the formation of large amount of low eutectic aluminosilicates at processing temperatures. Specimens containing $\geq 40\%$ Al₂O₃ yield different aluminosilicates, mainly mullite, which acted as a retarder for oxidation of SiC and at the same time it helped to consolidate SiC compacts. Final phases in fired compact were identified by XRD and different phases present were calculated on the basis of X-ray diffraction results. © 2001 Elsevier Science Ltd and Techna S.r.l. All rights reserved.

Keywords: B. Composites; D. Mullite; D. SiC; Near net shape; Hydroxyhydrogel

1. Introduction

Both mullite and silicon carbide are prospective materials in the field of engineering ceramics due to their superior high temperature mechanical properties [1–5] and resistance toward chemical attack. But, both the materials suffer from poor fracture resistance [6] which renders them unsuitable for applications in a diverse field. Since, thermal expansion coefficient of mullite and silicon carbide are very close ($\alpha_{\text{Mullite}} = 5.4 \times 10^{-6} / ^{\circ}\text{C}$, $\alpha_{\rm SiC} = 4.7 \times 10^{-6} / ^{\circ} \rm C$) to each other, it is possible to fabricate sintered compacts of SiC and mullite, fracture toughness of which is considerably higher than both the components [7-10]. Fabrication of the composite consisting of SiC and mullite, however, is to some extent difficult and an inert atmosphere during consolidation is always maintained to have a check on the oxidation of SiC [11]. Conventional processes encompass pressureless sintering and hot pressing [12]. A newer fabrication route involves reaction sintering where metallic aluminium was used along with SiC and the compact was

It is now established [15] that oxidation of SiC can be prevented if mullitisation takes place at such temperature where oxidation of SiC is not much. In the present investigation reactive alumina is generated in the intermediate hydroxyhydrogel in which SiC particles are kept dispersed so that a uniform mullite phase is formed around SiC particles which will ultimately help in preventing further oxidation of SiC and form the compositing mullite phase.

2. Experimental¹

A suspension of α -SiC, of characteristics given elsewhere [16], was mixed with aluminium salt in required

sintered in air where oxidation product of SiC, i.e. SiO_2 and oxidation product of aluminium i.e. Al_2O_3 combined together to form mullite at higher temperature [13,14]. In this process it was difficult to control oxidation of SiC and in some instances almost all of the SiC were ultimately converted to SiO_2 and in turn mullite [7].

^{*} Corresponding author.

¹ The preparation part is protected in India by Patent application No. 376/DEL/98.

amount. The entire mixture was brought to a gel-like mass consisting of hydroxyhydrogel of aluminium in which silicon carbide particles were dispersed by following known

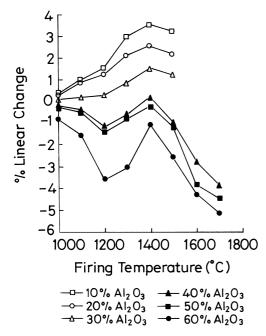


Fig. 1. Linear changes of specimens at different temperatures.

methods [16,17]. The gel- like mass was washed after ageing for 24 h, dried at 110° C and heat treated at 800° C for 1 h.

Heat treated mass was ball milled and sieved to pass through 100 mesh B.S. Pellets and bars were prepared uniaxially at a pressure of 42 MPa followed by isostatic pressing at 180 MPa. The specimens were fired in the temperature range of 1000–1700°C in ambient atmosphere with 2 h soaking.

3. Results and discussion

Dimensional changes of the specimens heat treated at different temperatures in ambient atmosphere are shown in Fig. 1, where linear changes were represented against the temperature of heat treatment. With increasing temperature of heat treatment, expansion of specimens were noted. The extent of dimensional changes was found to decrease with increasing amount of oxide material present in the specimens. The entire phenomenon is supposed to be linked to three distinct processes occurring simultaneously.

(i). During heat treatment, hydroxyhydrogel components present in the specimens gradually released H₂O

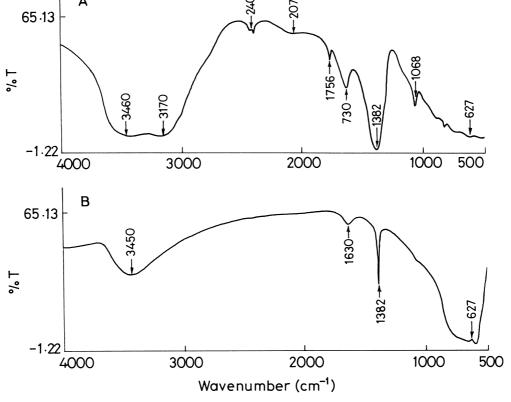


Fig. 2. IR spectroscopy of Al-hydrogel (A: Heat treated at 110°C, B: Heat treated at 1300°C).

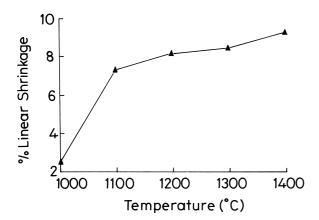


Fig. 3. Linear shrinkage of Al- hydrogel in relation to heat treatment at different temperatures.

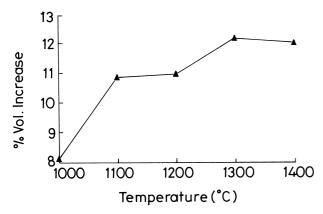


Fig. 4. Volume expansion of SiC powder in pelletised form fired at different temperatures in ambient gas atmosphere.

resulting in a skeleton structure with pores and cavities inside it [15]. It was found that OH linkages remained in Al–O–Al skeleton even at 1400°C, which was established by IR measurements (Fig. 2). At the temperature range studied, this network structure collapsed leading to linear shrinkage. The amount of linear shrinkages of such type of hydrogels are indicated in Fig. 3 where fast shrinkage was noted up to 1200°C with a small increment beyond.

- (ii). During heat treatment of SiC in the presence of oxygen, SiC converts to SiO₂ with a theoretical volume increase of 108% [7]. The volume increase noted for SiC pellets under similar conditions without oxide additives are indicated in Fig. 4.
- (iii). The formed SiO_2 and the original SiO_2 present as a surface layer over SiC particles combined with $A1^{+3}$ incorporated as reactive hydroxylated form to form aluminosilicates, mostly mullite, which was identified by XRD analysis. This SiO_2 —mullite conversion leads to a volume increase of around 4.8% [7].

The above three processes lead to a net change in the dimensions which was always positive in the present range of composition i.e. it leads to a net volume increase. It was reported earlier [15] that in such systems the oxidation of SiC was retarded due to the formation of aluminosilicates which protected SiC particles by forming an impervious layer over it. Now, the system may be visualised as a matrix of aluminosilicates in which SiC particles are embedded as a dispersed phase. The type of aluminosilicate formed is dependent on the Al₂O₃:SiO₂ mol ratio and in the present system samples

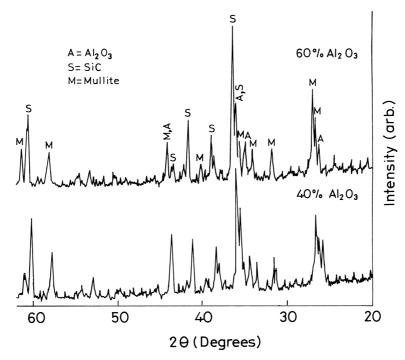


Fig. 5. XRD patterns of SiC-Al₂O₃ compact fired in ambient gas atmosphere.

containing < 40% Al₂O₃ were found to be unsuitable for heat treatment above 1500°C due to the formation of a large amount of liquid. Therefore, specimens with 40% and more Al₂O₃ were heat treated up to 1700°C in ambient atmosphere. XRD analysis of the heat treated specimens indicated the presence of SiC, mullite and small amount of Al₂O₃ without any measurable SiO₂ (Fig. 5). From this analysis and the weight gain of the specimens different phases present in the sintered compacts were calculated. Different phases formed at the final heat treatment temperature with respect to Al₂O₃ content is represented in Fig. 6. It appeared from Fig. 6 that up to 40% Al₂O₃, amount of SiO₂ went on decreasing with increasing amount of mullite. SiC remained almost as unchanged amount implying protection of SiC from further oxidation even with 10% Al₂O₃ in the pre-

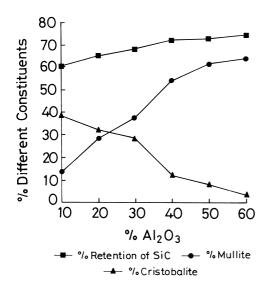


Fig. 6. Variation of different constituents in relation to Al_2O_3 content fired at $1600^{\circ}C$.

sent system. Ten percent Al₂O₃ containing specimens were fired up to 1500°C due to the reason stated above.

Specimens fired above 1400°C developed a white outer layer for all the samples which were consisting mainly of mullite (Fig. 7). Unlike normal sintering process, here both expansion and contraction processes proceeded simultaneously with the possibility of obtaining a sintered material with low to no volume change. Volume expansion was calculated on the basis of the formation of SiO2 from SiC and conversion of SiO₂ to mullite, both leading to volume expansion. It was found that by increasing Al₂O₃ content of the specimens volume changes decreased and with 40% Al₂O₃ the increase in net volume was $\sim 3\%$ at 1400° C. The similar specimens, i.e. samples containing 40–60% Al₂O₃ were fired at 1700°C in ambient atmosphere. Those specimens were found to shrink and it ranged from 9.85 to 14.23 vol\% when the porosity was <2\%. Thus, in such systems formation of near-net-shape sintered materials are difficult as lower amount of Al₂O₃ will make the sample unsuitable above 1500°C due to high liquid formation and higher Al₂O₃ brought in through hydrogel intermediates will lead to excessive shrinkage which are likely to overweighs the expansion due to chemical conversions. Moreover, a normal sintering shrinkage would add on to this. Though the process is not likely to lead to a near-net-shape sintered body at the present range of compositions but due to high retention of SiC with mullite as a major phase in the sintered compacts with comparatively lower shrinkages accompanying the process may find use of the material as engineering ceramics. Moreover, the ambient processing would lead to lowering of cost of production to a large extent. This processing route, thus, is likely to be a good alternative for making SiC-mullite-Al₂O₃ composite materials or a base material for a host of other composites compatible with the system.

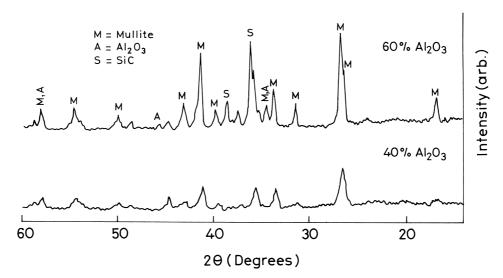


Fig. 7. XRD patterns of white surface formed during consolidation of specimens.

4. Conclusions

- 1. A very low shrinkage material could be synthesised in the $SiC-Mullite-Al_2O_3$ composite system by using powder precursors prepared through intermediate hydroxyhydrogel formation.
- 2. Sintering and processing of the materials possible without Ar or N_2 atmosphere as the presence of oxygen in the firing atmosphere was favourably used up to a limit and oxidation of remaining SiC could be totally prevented afterward.
- 3. Al₂O₃ above 40% was found to be the minimum amount to be used for obtaining products of utility.

Acknowledgements

Authors are grateful to Dr. H. S. Maiti, Director CG & CRI, for his personal interest, valuable suggestions, active help and permission to publish this work. Thanks are also due to Dr. B. Karmakar for doing IR spectroscopy, to the XRD laboratory and various other departments providing infra-facilities.

References

- [1] T.J. Whalen, Processing and properties of structural silicon carbide, Ceram. Eng. Sci. Proc. 7 (9–10) (1986) 1135–1143.
- [2] G.C. Wei, P.F. Becher, Improvement in mechanical properties in SiC by addition of TiC particles, J. Am. Ceram. Soc. 647 (8) (1984) 571–574.
- [3] M.A. Janney, Microstructural development and mechanical properties of SiC and SiC–TiC composites, Am. Ceram. Soc. Bull. 65 (2) (1986) 357–362.
- [4] W.H. Gu, K.T. Faber, R.W. Steinbreech, Microcracking and R-curve behaviour in SiC-TiB₂ composites, Acta Metall. Mater. 40 (11) (1992) 3121-3128.

- [5] M.A. Janney, Mechanical properties and oxidation behaviour of a hot pressed SiC-15 vol% TiB₂ composites, Am. Ceram. Soc. Bull. 66 (2) (1987) 322-324.
- [6] P. Chantikul, G.R. Anatis, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: II. Strength method, J. Am. Ceram. Soc. 64 (9) (1981) 539–543.
- [7] S. Wu, N. Claussen, Reaction bonding and mechanical properties of mullite/silicon carbide composites, J. Am. Ceram. Soc. 77 (11) (1994) 2898–2904.
- [8] T.N. Tiegs, P.F. Becher, Whisker-reinforced ceramic composites, in: W. Bunk, H. Hausner (Eds.), Ceramic Materials and Components, Verlag Deutsche keramische Gesellschaft, Cologne, Germany, 1986, pp. 191–200.
- [9] S.C. Samanta, S. Musikant, SiC whisker-reinforced ceramic matrix composites, Ceram. Eng. Sci. Proc. 8 (7–8) (1987) 663–670.
- [10] T. Kumazawa, S. Ohta, H. Tabata, S. Kanzaki, Mechanical properties of mullite–SiC whisker composites, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 97 (9) (1989) 895–902.
- [11] M.I. Osendi, B.A. Bender, D. Lewis III, Microstructure and mechanical properties of mullite-silicon carbide composites, J. Am. Ceram. Soc. 72 (6) (1989) 1049–1054.
- [12] J.W. Milewski, Efficient use of whisker in the reinforcement of ceramics, Adv. Ceram. Mater. 1 (1) (1986) 36–41.
- [13] H. Kamiaki, C. Yamagishi, J. Asaumi, Mechanical properties and microstructure of mullite–SiC–ZrO₂ particulate composites, in: S. Somiya, R.F. Davis, J.A. Pask (Eds.), Ceramic Transactions, vol. 6, Mullite and mullite matrix composites, Am. Ceram. Soc, Westerville, OH, 1987, pp. 509–518.
- [14] S. Wu, N. Claussen, Fabrication and properties of low-shrinkage reaction-bonded mullite, J. Am. Ceram. Soc. 74 (1991) 2460– 2463
- [15] A.K. Samanta, K.K. Dhargupta, S. Ghatak, Retention of SiC during development of SiC–M_xSi_yO_z composites [M=Al, Zr, Mg] by reaction bonding in air, J. Euro. Ceram. Soc. 20 (12) (2000) 1883–1894.
- [16] A.K. Samanta, K.K. Dhargupta, S. Ghatak, Prevention of oxidation of SiC through reaction bonding in the SiC–mullite composite system by using the technique of intermediate gel formation, Tran. Ind. Ceram. Soc. 57 (4) (1998) 103–105.
- [17] A.K. Samanta, K.K. Dhargupta, S. Ghatak, Oxidation behaviour of silicon carbide-gel derived oxide composite systems, Trans. Ind. Ceram. Soc. 57 (5) (1998) 119–121.