

Ceramics International 28 (2002) 209-215

www.elsevier.com/locate/ceramint

Effects of Sr₂Nb₂O₇ additive on microstructure and mechanical properties of 3Y–TZP/Al₂O₃ ceramics

X.Q. Liu, X.M. Chen*

Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

Received 10 January 2001; received in revised form 30 April 2001; accepted 15 June 2001

Abstract

The effects of $Sr_2Nb_2O_7$ additive on microstructure and mechanical properties of 3Y– TZP/Al_2O_3 ceramics were investigated. $Sr_2Nb_2O_7$ reacted with Al_2O_3 to form $SrAl_{12}O_{19}$ platelets, which could contribute to the fracture toughness due to the elongated grains. The fraction of transformable tetragonal zirconia phase increased firstly with the $Sr_2Nb_2O_7$ content and then decreased when the additive content is beyond a critical value. Also, the fracture toughness increased firstly to a maximum value (10.2 MPa.m^{1/2}) with the additive content and then decreased for composites sintered at 1600 °C for 6 h, while it increased linearly with additive content for composites sintered at 1575 °C for 6 h. However, the Vickers hardness decreased linearly with the $Sr_2Nb_2O_7$ content for composites sintered under any condition investigated here. The fracture toughness was affected by the fraction of transformable tetragonal zirconia phase and $Sr_2Nb_2O_7$ content, and the toughening effects should be the integrated result of stressinduced transformation toughening and elongated grain toughening. © 2002 Elsevier Science Ltd and Techna S.r.l. All rights reserved.

Keywords: B. Microstructure; C. Mechanical properties; 3Y-TZP/Al₂O₃ ceramics; Sr₂Nb₂O₇ additive

1. Introduction

Zirconia toughened alumina (ZTA) ceramics had been well documented in the past two decades [1–8]. According to previous works, the major toughening mechanisms were stress-induced transformation toughening and microcracking toughening. And improvement of fracture toughness depended on many factors, including particle size, nature of polymorph, content of zirconia and ZrO₂ particle distribution [4,7–8].

On the other hand, Chen et al. [9] proposed a novel toughening approach, in which a piezoelectric and/or ferroelectric secondary phase was introduced into the ceramic matrix as a toughening agent and the energy dissipation and/or conversion due to domain wall motion and piezoelectric effect were considered as a new toughening mechanism. The so-called piezoelectric secondary phase toughening approach was successfully applied in the systems: BaTiO₃/Al₂O₃ [9], Nd₂Ti₂O₇/Al₂O₃ [10] and Sr₂Nb₂O₇/3Y–TZP [11,12].

In the present work, Sr₂Nb₂O₇ ferroelectric secondary phase was introduced into the 3Y–TZP/Al₂O₃ ceramic matrix, and the effects of the secondary phase on microstructure and mechanical properties were investigated.

2. Experimental procedure

High-purity alumina (α -Al₂O₃, purity > 99.9%), 3Y–TZP (3 mol% yttria-doped tetragonal zirconia polycrystal, purity > 99.9%), and synthesized Sr₂Nb₂O₇ were used as starting materials. The synthesis route of Sr₂Nb₂O₇ powder had reported before in detail [11,12]. First, ZTA powder was prepared according the form of 45ZrO₂·55Al₂O₃ (vol.%). Then, xSr₂Nb₂O₇/(1-x) ZTA composite powders (x=0.0, 0.005, 0.01, 0.015, 0.02) were mixed by ball milling with zirconia media in ethanol for 24 h. After drying, such mixed powders were pressed into disc compacts of 12 mm in diameter and 1 to 4 mm in height, and these compacts were sintered in the range 1550 °C to 1600 °C in air for 6 h.

The microstructures were evaluated by scanning electron microscopy (SEM, HITACHI S-570), and the phase constitution of the composite ceramics was characterized

^{*} Corresponding author. Fax: +86-571-87951358. E-mail address: xmchen@cmsce.zju.edu.cn (X.M. Chen).

by X-ray powder diffraction (XRD) analysis using CuK_{α} radiation. The tetragonal fraction of ZrO_2 in the composites was calculated with the relation of Garvie and Nicholson [13], and the fraction of transformable tetragonal phase was the difference of the tetragonal zirconia fraction of as-sintered surface and crush powder.

The fracture toughness was evaluated by the modified indentation method [14,15] at room temperature using a diamond Vickers indenter with a loading time of 15 s at a constant load of 100 N. The results were averaged over six indentations per specimen and the following formula was used for the calculation:

$$(K_{1C}\phi/Ha^{1/2})(H/E\phi)^{2/5} = 0.035(l/a)^{-1/2}$$
 (1)

where K_{1C} was the toughness of the composite ceramic, H the Vickers hardness, E the effective elastic modulus, ϕ the constraint factor (\approx 3), l the length of the crack, and a the half diagonal length of an indentation.

3. Results and discussion

Dense $x\text{Sr}_2\text{Nb}_2\text{O}_7/(1-x)ZTA$ composites can easily be obtained when the sintering temperature is higher

than 1575 °C and x < 1.5 mol%, and their relative densities are shown in Table 2, where the theoretical density is calculated using a mixture rule. The SEM micrographs of $x \operatorname{Sr}_2 \operatorname{Nb}_2 \operatorname{O}_7/(1-x) ZTA$ composites (Figs. 1 and 2) show that some elongated grains appear when $\operatorname{Sr}_2 \operatorname{Nb}_2 \operatorname{O}_7$ secondary phase is incorporated into the ZTA ceramic matrix. XRD patterns of these composites confirm that $\operatorname{SrAl}_{12} \operatorname{O}_{19}$ secondary phase is formed in situ during sintering (Figs. 3 and 4). According to Cutler et al. [16], the following reaction occurs during sintering

$$Sr_2Nb_2O_7 + 12Al_2O_3 \rightarrow 2SrAl_{12}O_{19} + Nb_2O_5$$
 (2)

Also, the authors find that it is difficult to form strontium aluminate platelets in situ in Y–TZP ceramics, while the present work is just based on the 3Y–TZP/Al $_2$ O $_3$ ceramic matrix. On the other hand, the fraction of tetragonal zirconia phase decreases with the introduction of $Sr_2Nb_2O_7$ (see Table 1). However, the fraction of transformable tetragonal zirconia phase increases to a critical value firstly and then decreases to very low level. This is consistent with our previous work [11,12], and the reason is that there exists a critical grain size for stabilizing the tetragonal zirconia phase at the room temperature.

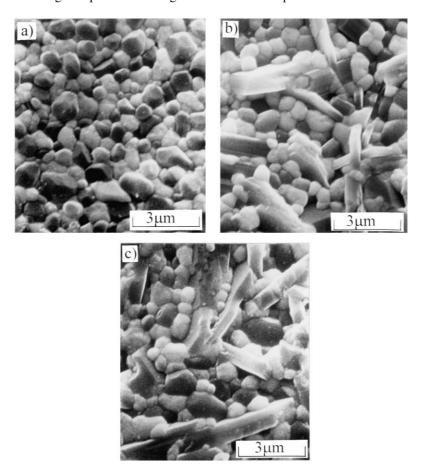


Fig. 1. Scanning electron microscopy images of polished surfaces of xSr₂Nb₂O₇/(1-x)ZTA sintered at 1575 °C for 6 h: (a) x = 0 mol%, (b) x = 0.5 mol%, (c) x = 1 mol%.

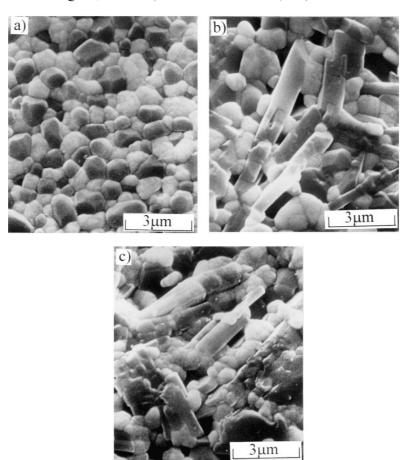


Fig. 2. Scanning electron microscopy images of polished surfaces of xSr₂Nb₂O₇/(1-x)ZTA sintered at 1600 °C for 6 h: (a) x = 0 mol%, (b) x = 0.5 mol%, (c) x = 1 mol%.

Table 1 Relative density, phase constitution and transformable tetragonal fractions of xSr₂Nb₂O₇/(1-x)ZTA ceramics sintered under different conditions

Sintering condition	X	Phase constitution ^a	Volume fraction of tetragonal phase ^b	Transformable tetragonal fraction
1575 °C/6 h	0.000	A+T	100%	24.8%
	0.005	A + T + M + SA	89.3%	50.5%
	0.010	A + T + M + SA	48.8%	33.6%
1600 °C/6 h	0.000	A + T	100%	28.1%
	0.005	A + T + M + SA	59.5%	28.1%
	0.010	A + M + T + SA	17.4%	8.7%

^a A—α-Alumina, T—tetragonal zirconia, M—monoclinic zirconia, SA—strontium aluminate

The introduction of $Sr_2Nb_2O_7$ secondary phase significantly enhances the fracture toughness of ZTA ceramics, and the maximum toughness value reaches 10.2 MPa.m^{1/2} for the composites x=0.5 mol% sintered at 1600 °C for 6 h, while that of the matrix is 6.9 MPa.m^{1/2}. For composites sintered at 1600 °C for 6 h, the fracture toughness increases with $Sr_2Nb_2O_7$ content to a max-

imum value firstly and then decreases when the additive content is beyond a critical value, while for composites sintered at 1575 °C for 6 h, the toughness straightly increases with additive content. However, the Vickers hardness decreases straightly with the Sr₂Nb₂O₇ content under any condition investigated here, and the effect of sintering temperature is not obvious (see Table 2).

^b On as-sintering surface.

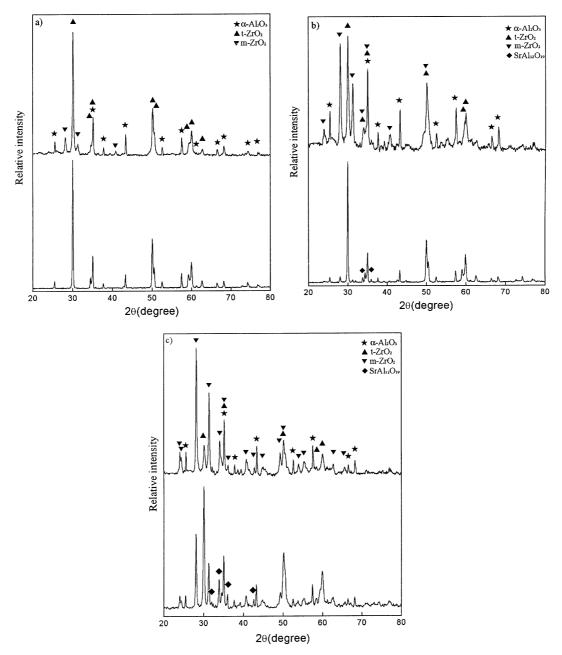


Fig. 3. XRD patterns of as-sintered (lower) and crushed powders (upper) for $xSr_2Nb_2O_7/(1-x)ZTA$ ceramics sintered at 1575 °C for 6 h: (a) x = 0mol%, (b) x = 0.5 mol%, (c) x = 1.0 mol%.

Table 2 Relative density, Vickers hardness and fracture toughness of $x Sr_2 Nb_2 O_7/(1-x)ZTA$ ceramics sintered under different conditions

Sintering condition	X	Relative density	Hv (GPa)	K_{1C} (MPa.m ^{1/2})
1575 °C/6 h	0.000	98.2%	15.2	6.9
	0.005	100%	14.0	7.6
	0.010	97.6%	11.6	8.0
1600 °C/6 h	0.000	98.7%	15.1	6.9
	0.005	100%	14.0	10.1
	0.010	98.8%	11.5	8.7

According to previous works [17,18], aluminate platelets (LaAl₁₁O₁₈, LaMgAl₁₁O₁₉, SrAl₁₂O₁₉ and Mg₂ NaAl₁₅O₂₅) can improve the fracture toughness due to the elongated grains. Note that the piezoelectric effect is absent for SrAl₁₂O₁₉ crystals which belong to central symmetric point groups (P6/mmm) and the piezoelectric secondary phase toughening can not be expected. Therefore, the toughening effects in the present composite ceramics are primarily attributed to stress-induced transformation toughening and elongated grain toughening. The fracture toughness linearly increases with Sr₂Nb₂O₇ content for composites sintered at 1575 °C

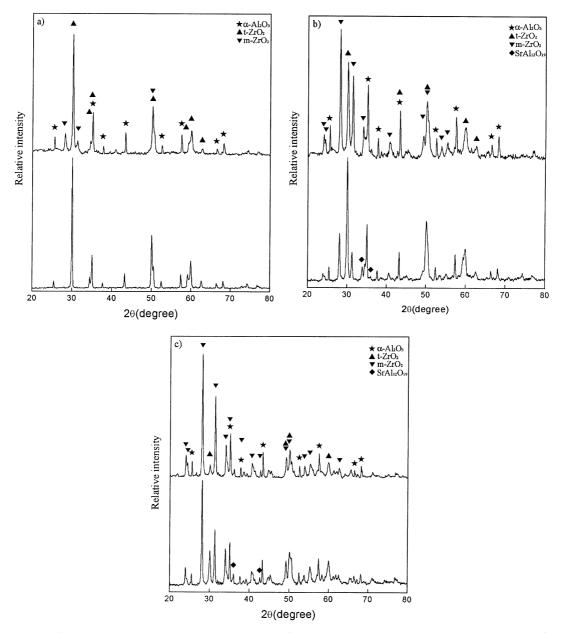


Fig. 4. XRD patterns of as-sintered (lower) and crushed powders (upper) for xSr₂Nb₂O₇/(1-x)ZTA ceramics sintered at 1600 °C for 6 h: (a) x=0 mol%, (b) x=0.5 mol%, (c) x=1.0 mol%.

for 6 h, while that of transformable tetragonal zirconia fraction firstly increases to a maximum value and then decreases when additive content is beyond a critical value (Figs. 5 and 6). On the other hand, the contribution of elongated grain toughening should be proportional to the $Sr_2Nb_2O_7$ content as well as that of $SrAl_{12}O_{19}$ for the Sr element in $SrAl_{12}O_{19}$ coming from $Sr_2Nb_2O_7$, and this is why the fracture toughness for composite x=1.0 mol% is larger than that for x=0.5 mol%. While the fracture toughness firstly increases to a maximum value (10.2 MPa.m^{1/2}, and that of the matrix is 6.9 MPa.m^{1/2}) and then decreases with $Sr_2Nb_2O_7$ content for composites sintered at 1600 °C for 6 h where the fraction of transformable tetragonal

zirconia phase decreases with $Sr_2Nb_2O_7$ content. In this case, the fracture toughness for the composite with x=1.0~mol% is less than that for x=0.5~mol% due to the contribution of elongated grain toughening which can not compensate the loss of fracture toughness originated by the reduced fraction of transformable tetragonal zirconia phase.

4. Conclusions

The Sr₂Nb₂O₇ additive reacted with the Al₂O₃ ceramic matrix to form SrAl₁₂O₁₉ platelets, which could contribute to the fracture toughness of composites due

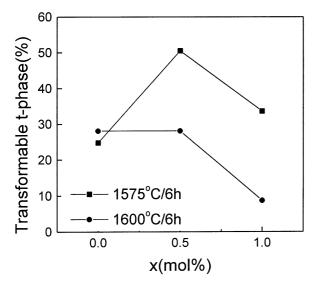


Fig. 5. Effect of $Sr_2Nb_2O_7$ content and sintering temperature on the fraction of transformable tetragonal zirconia phase of $xSr_2Nb_2O_7/(1-x)ZTA$ ceramics.

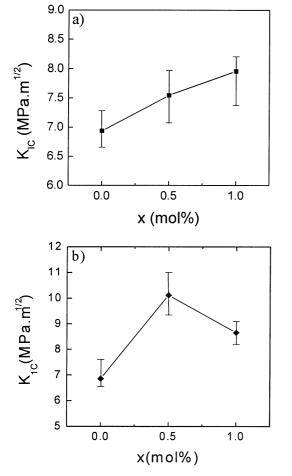


Fig. 6. Effect of $Sr_2Nb_2O_7$ content on fracture toughness of $xSr_2Nb_2O_7/(1-x)ZTA$ ceramics sintered under different conditions: (a) 1575 °C/6 h, (b) 1600 °C/6 h.

to the elongated grains. The fraction of tetragonal zirconia phase decreased with increasing Sr₂Nb₂O₇ addition, the variation tendency of transformable tetragonal zirconia with the composition was affected by the sintering conditions. For composites sintered at 1575 °C for 6 h, it increased firstly and then decreased when the Sr₂Nb₂O₇ content is beyond a critical value, while for composites sintered at 1600 °C for 6 h it decreased with additive content. The Vickers hardness decreased straightly with Sr₂Nb₂O₇ additive for all composites sintered under any condition investigated here. However, the fracture toughness increased to a maximum value of 10.2 MPa.m^{1/2} (6.9 MPa.m^{1/2} for matrix) firstly and then decreased with Sr₂Nb₂O₇ additive for composites sintered at 1600 °C for 6 h, while it increased straightly with additive for composites sintered at 1575 °C for 6 h. The fracture toughness of the present composites were primarily affected by the fraction of the transformable tetragonal zirconia phase and Sr₂Nb₂O₇ content, and the toughening effects should be primarily the integrated result of stress-induced transformation toughening and elongated grain toughening.

Acknowledgements

This work was supported by National Nature Science Foundation of China under grant number 59782007 and National Science Foundation for Distinguished Young Scientists under grant number 50025205.

References

- F.F. Lange, Transformation toughening. Part 4, fabrication, fracture toughness and strength of Al₂O₃–ZrO₂ composites, J. Mater. Sci. 17 (1982) 247–254.
- [2] Y.S. Shin, Y.W. Rhee, S.J.L. Kang, Experimental evaluation of toughening mechanisms in alumina-zirconia composites, J. Am. Ceram. Soc. 82 (5) (1999) 1229–1232.
- [3] G. Orange, G. Fantozzi, P. Homerin, F. Thevenot, A. Leriche, F. Cambier, Preparation and characterization of a dispersion toughened ceramic for thermomechanical uses (ZTA), Part II: thermomechanical characterization. Effect of microstructure and temperature on toughening mechanisms, J. Eur. Ceram. Soc. 9 (1992) 177–185.
- [4] T. Kosmaè, M. Swain, N. Claussen, The role of tetragonal and monoclinic ZrO₂ particles in the fracture toughness of Al₂O₃– ZrO₂ composites, Mater. Sci. Eng. 71 (1985) 57–64.
- [5] M. Rühle, N. Claussen, A.H. Heuer, Transformation and microcrack toughening as complimentary processes in ZrO₂-toughened Al₂O₃, J. Am. Ceram. Soc. 69 (3) (1986) 195–197.
- [6] M. Rühle, Microcrack and transformation toughening of zirconia-containing alumina, Mater. Sci. Eng. A105/106 (1988) 77–82.
- [7] P.F. Becher, K.B. Alexander, A. Bleier, S.B. Waters, W.H. Warwick, Influence of ZrO₂ grain size and content on the transformation response in Al₂O₃–ZrO₂ (12 mol% CeO₂) system, J. Am. Ceram. Soc. 76 (3) (1993) 657–663.
- [8] K. Ranjbar, B.T. Rao, T.R.R. Mohan, C.S. Harendranath, Effect of chemically added zirconia and yttria on the mechanical prop-

- erties of zirconia-dispersed alumina, Am. Ceram. Soc. Bull. 73 (2) (1994) 63–66.
- [9] X.M. Chen, B. Yang, A new approach for toughening of ceramics, Mater. Lett. 33 (1997) 237–240.
- [10] B. Yang, X.M. Chen, Alumina ceramics toughened by piezoelectric secondary phase, J. Eur. Ceram. Soc. 20 (11) (2000) 1687–1690.
- [11] X.M. Chen, X.Q. Liu, F. Liu, X.B. Zhang, 3Y–TZP ceramics toughened by $Sr_2Nb_2O_7$ secondary phase, J. Eur. Ceram. Soc. 21 (2001) 477–481.
- [12] X.Q. Liu, X.M. Chen, Effects of composition and sintering conditions upon microstructures and fracture toughness of Sr₂Nb₂O₇-toughened 3Y–TZP ceramics, Mater. Sci. Eng. (in press).
- [13] R.C. Garvie, P.S. Nicholson, Phase analysis in zirconia systems, J. Am. Ceram. Soc. 55 (1972) 303–305.

- [14] A.G. Evans, E.A. Charles, Fracture toughness determinations by indentation, J. Am. Ceram. Soc. 59 (7-8) (1976) 371–372.
- [15] K. Niihara, R. Morena, D.P.H. Hasselman, Evaluation of K_{IC} of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett. 1 (1982) 13–16.
- [16] R.A. Cutler, R.J. Mayhew, K.M. Prettyman, A.V. Virkar, High-toughness Ce-TZP/Al₂O₃ ceramics with improved hardness and strength, J. Am. Ceram. Soc. 74 (1) (1991) 179–186.
- [17] P.L. Chen, I.W. Chen, In-situ alumina/aluminate platelet composites, J. Am. Ceram. Soc. 75 (9) (1992) 2610–2612.
- [18] M. Yasuoka, K. Hirao, M.E. Brito, S. Kanzaki, High-strength and high-fracture-toughness ceramics in the Al₂O₃/LaAl₁₁O₁₈ systems, J. Am. Ceram. Soc. 78 (7) (1995) 1853–1856.