

Ceramics International 28 (2002) 447–450

www.elsevier.com/locate/ceramint

Effect of TiO₂ addition on the stability of t-ZrO₂ in mullite–ZrO₂ composites prepared from various starting materials

T. Ebadzadeh*, E. Ghasemi

Materials and Energy Research Center, PO Box 14155-4777, Tehran, Iran

Received 12 December 2000; received in revised form 4 March 2001; accepted 3 October 2001

Abstract

Mullite–zirconia composite materials were prepared by reaction sintering of α -alumina and aluminium nitrate as alumina sources, and zircon powder. Different effects were observed on sintering, densification and microstructure of composites prepared by various alumina sources by adding TiO₂. The formation temperature and retention of tetragonal zirconia phase were found to differ in composites with and without TiO₂. The more fraction of t-ZrO₂ was retained from the reaction sintering of alumina nitrate and zircon without TiO₂ addition. The same trend was observed for the combination of α -alumina and zircon containing 3.5 wt.% TiO₂ below 1550 °C. The microstructural analysis show enlarge ZrO₂ particles in compositions containing TiO₂; that is the reason for the reduction of t-ZrO₂ concentration. © 2002 Elsevier Science Ltd and Techna S.r.l. All rights reserved.

Keywords: B. Composites; D. Mullite; D. ZrO2; D. TiO2

1. Introduction

Many workers have studied the system ZrO_2 – Al_2O_3 – SiO_2 – TiO_2 [1–3]. As proved, TiO_2 is the most effective additive for improving sintering and mechanical properties [4]. In zircon/alumina/titania composition densification occurs through the formation of a transitory liquid phase. Moya et al. [5] found that for the composition located inside the solid solubility limit (0.25 mole TiO_2) the reaction-sintering process takes place in the absence of any liquid phase. Conversely, in the composition with the higher TiO_2 content than the solid solubility limit, the transitory formation of $ZrTiO_4$ occurs at temperatures around 1300 °C.

The aim of the present study is to examine the retention of tetragonal zirconia phase in reaction-sintered mullite-zirconia composites prepared from different alumina sources. In addition, the effect of TiO₂ on reaction sintering, densification and microstructure of these composites was investigated and correlated to the retention of tetragonal zirconia phase.

2. Experimental procedures

Four compositions were prepared by the mixing of α alumina (CS-400M; MARTOXID, Germany), aluminium nitrate (Al(NO_3)₃.9H₂O₅, >99.9%, Merck), zircon (Zircosil 5; Cookson Matthey Ceramics and Materials) and TiO₂ (Merck), Table 1. AZ and AZT powders were mixed for 1 h by a planetary mill in isopropanol using yttria-stabilised tetragonal zirconia pot and balls. Then a hot stirrer at 80 °C dried the obtained slurries. ANZ and ANZT powders were prepared by dissolving of aluminium nitrate in deionized water, and zircon and TiO2 powders gradually added into the obtained solution. The pH of the mixture was adjusted to 3 by adding dilute HNO₃ acid. After stirring the mixture for 4 h, it was dried at 80 °C and a paste compact was obtained. The compact was calcined at 900 °C for 3 h. The calcined powders were wet milled for 1 h under the conditions already mentioned for AZ and AZT powders. The mixed powders were compacted by uniaxial pressing at 190 MPa. PVA (1 wt.%) was used as binder, and granulation was made by passing the dried mixtures through 180 µm sieve. Density and porosity measurements of sintered samples were carried out according to ASTM-C20. In all cases, the progress of the chemical reaction between alumina sources, zircon and TiO2 was examined by X-

^{*} Corresponding author. Tel.: +98-218-771-626; fax: +98-218-773-352.

ray analysis with a Philips X' Pert System with Ni-filtered CuK_{α} radiation. As-sintered samples were used for X-ray analysis due to tetragonal \rightarrow monoclinic zirconia phase transformation by polishing and grinding effects [6]. The retained tetragonal fraction of ZrO_2 was obtained from the ratio of intensity of the (111) tetragonal peak to the sum of the intensities of the (111) and ($\bar{1}11$) monoclinic and (111) tetragonal peaks [7]. The grain size of ZrO_2 particles in sintered samples was determined from counts of 170 grains by scanning electron microscopy using a stereoscan 360, Lecia Cambridge instrument.

3. Results and discussion

The more retention of tetragonal zirconia phase is found in ANZ sample than AZ sample (Fig. 1) which can be attributed to the formation of zirconia phase at lower temperatures (Fig. 2) and low density (Fig. 3) of this sample [8,9]. As Fig. 2 illustrates the dissociation of zircon and the formation of zirconia occur at lower temperatures in ANZ sample than AZ sample. Extents of reaction in ANZ sample is confirmed by considering Fig. 4 which demonstrates no additional alumina powder at 1600 °C, while in AZ sample alumina powder remains partially unreacted. The reaction evolution of ANZ sample can be attributed to the homogeneity of the mixture of alumina precursor and zircon powder. Addition of 3.5 wt.% TiO₂ to the composition of AZ and ANZ samples causes the significant change in the dissociation of zircon in AZ sample and improvement of densification in ANZ sample. The observed changes

Table 1 Composition of mixed-powder samples

	α-Al ₂ O ₃	Al(NO ₃) ₃ .9H ₂ O	ZrSiO ₄	TiO ₂
AZ	*	_	*	
AZT	*	_	*	*
ANZ	_	*	*	_
ANZT	_	*	*	*

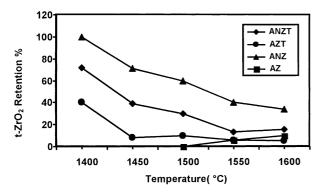


Fig. 1. Tetragonal zirconia fraction in reaction-sintered samples as a function of sintering temperature after 2 h.

alternately affect on the retention of t-ZrO₂ in these samples. The reaction between alumina and zircon enhances by introducing TiO₂ (Fig. 2), and the dissociation of zircon and formation of zirconia are shifted to the lower temperatures. Fig. 4 indicates further evidence of the enhance effect of TiO₂ in the dissociation of zircon and formation of mullite and zirconia. As Fig. 1 reveals, adding 3.5 wt.% TiO₂ leads the sharp change of t-ZrO₂ concentration in AZ sample at low sintering temperature (e.g. 1400 °C). Presumably, the formation of t-ZrO₂ at lower temperatures implies the existence of

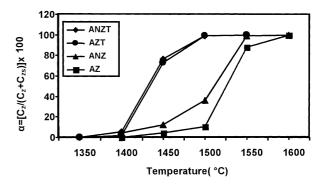


Fig. 2. Zirconia formation versus sintering temperature after 2 h heating. C_z and C_{zs} , the concentration of zirconia and zircon, respectively. α gives the value of zircon dissociation.

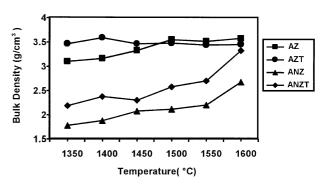


Fig. 3. Bulk density of composites under various sintering conditions after 2 h heating.

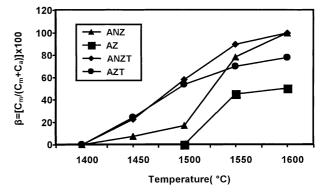


Fig. 4. Mullite formation versus sintering temperature after 2 h heating. $C_{\rm m}$ and $C_{\rm a}$, the concentration of mullite and alumina, respectively. β gives the value of mullite formation.

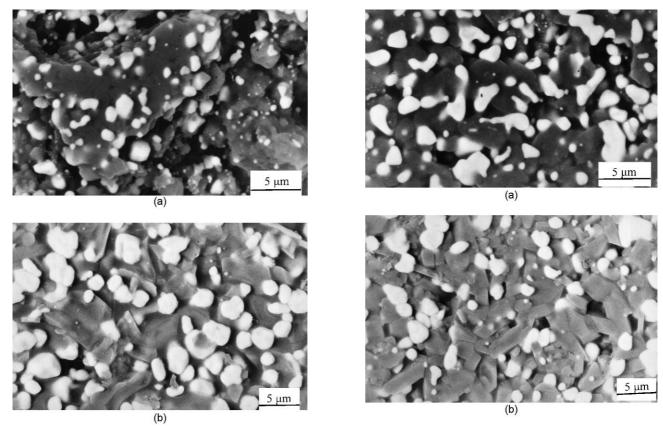


Fig. 5. Scanning electron micrographs of the thermal etched surface of (a) AZ and (b) AZT samples sintered at $1600~^{\circ}\text{C}$ for 2 h.

Fig. 6. Scanning electron micrographs of the thermal etched surface of (a) ANZ and (b) ANZT samples sintered at 1600 °C for 2 h.

some particles below the critical size for transformation. This result is consistent with reducing of the tetragonal phase concentration by increasing sintering temperature (Fig. 1). The further attention to Fig. 1 reveals that the formation temperature of t-ZrO₂ in AZ sample begins above 1500 °C. X-ray diffraction analysis showed only monoclinic zirconia as the crystalline phase at this temperature. By increasing the sintering temperature the more tetragonal phase preserved in AZ sample. This result is consistent with the fact that the more tetragonal particles entrapped by growing the mullite grains. Since as reported earlier [10], the ZrO₂ particles are intragranular in mullite-ZrO₂ composites fabricated by reaction-sintering of alumina and zircon powder mixtures. Thus, it can be postulated that the tetragonal particles remain below the critical size for transformation due to the increasing of diffusion distances by increasing the mullite layer [11]. The SEM micrographs corresponding to AZ and AZT samples (typically, Fig. 5a and b) show the elongated mullite grains and enlarge zirconia particles $(2.1\pm1.1 \mu m)$ in AZT sample, while AZ sample contains the smaller zirconia particles $(1.7\pm0.7 \mu m)$ surrounded by mullite grains.

The present results suggest that the addition of TiO₂ gives rise to the reduction of t-ZrO₂ concentration in ANZ sample by increasing the sintering temperature.

This can be possibly attributed to the decreasing of tetragonal—monoclinic transformation temperature by the formation of solid solution of TiO_2 in t-ZrO₂ [12] and the enlargement of zirconia particles higher than the critical size of tetragonal—monoclinic transformation [13]. The electron microscope images of ANZ and ANZT samples (typically, Fig. 6a and b) show the two different size of zirconia particles, 0.9 ± 0.5 and 2.8 ± 0.8 µm, respectively.

From the results of Figs. 1 and 3, one would expect to distinguish a connection between t-ZrO₂ retention and density of the composites sintered at the different temperatures. As can be seen, the lower compact composites obtain the higher t-ZrO₂ concentration. This effect has been noted previously [9] and the possible explanation is the reduction of compaction tension, which enhances tetragonal to monoclinic transformation.

4. Conclusions

The present experimental results indicate that the addition of TiO₂ to mullite-ZrO₂ composites prepared from different alumina sources leads to change of reaction sintering, densification and microstructure which can alternately alter the formation temperature and

retention of t-ZrO₂ phase in these composites. The tetragonal phase is not detected in the mixture of α-alumina and zircon sintered below 1500 °C, while by adding TiO₂ due to the extent of reaction t-ZrO₂ peaks appear at low sintering temperature (e.g. 1400 °C). In this mixture, no significant change of t-ZrO₂ concentration is noted in composites containing TiO₂ and without it in the final sintering temperature (1600 °C). At all sintering temperatures the composites derived from aluminium nitrate as the alumina source have higher t-ZrO₂ concentrations than when alumina is used (with and without TiO₂). The concentration of t-ZrO₂ decreases by introducing TiO₂ in aluminium nitrate derived composites.

Acknowledgements

The writers thank S. Noraei and F. Arkian for the XRD and scanning electron microscopy studies.

References

- J.M. Rincon, J.S. Moya, M.F. De Melo, Microstructural study of toughened ZrO₂/mullite ceramic composites obtained by reaction sintering with TiO₂ additions, J. Br. Ceram. Trans. 85 (1986) 201–206.
- [2] P. Pena, S. De Aza, The zircon thermal behaviour: effect of impurities, part 1, J. Mater. Sci. 19 (1984) 135–142.

- [3] K. Srikrishna, G. Thomas, J.S. Moya, Sintering additives for mullite-zirconia composites, in: Advances in Ceramics, Vol. 24, Science and Technology of Zirconia III, 1988, pp. 277–286.
- [4] M.F. Melo, J.S. Moya, P. Pena, S. De Aza, Multicomponent toughened ceramic materials obtained by reaction sintering: part 3, system ZrO₂–Al₂O₃–SiO₂–TiO₂, J. Mater. Sci. 20 (1985) 2711– 2718.
- [5] J.S. Moya, P. Miranzo, M.I. Osendi, Influence of additives on the microstructural development of mullite–ZrO₂ and alumina– ZrO₂, J. Mater. Sci. Eng. A 109 (1989) 139–145.
- [6] P. Boch, J.P. Giry, Preparation and properties of reactionsintered mullite–ZrO₂ ceramics, J. Mater. Sci. Eng. 71 (1985) 39–48.
- [7] R.C. Garvie, P.S. Nicholson, Phase analysis in zirconia systems, J. Am. Ceram. Soc. 55 (6) (1972) 303–305.
- [8] T. Ebadzadeh, E. Ghasemi, Influence of starting materials on the reaction sintering of mullite–ZrO₂ composites, J. Mater. Sci. Eng. A283 (2000) 289–297.
- [9] G. De Portu, J.W. Henney, The microstructure and mechanical properties of mullite–zirconia composites, Br. Ceram. Trans. J. 83 (1984) 69–72.
- [10] J.S. Wallace, N. Claussen, S. Porochazka, Properties of mullitezirconia composites prepared by different processing routes, in: Proceedings of an International Symposium on Ceramic Components for Engines, Japan, 1983, pp. 642–649.
- [11] M.G.M.U. Ismail, Z. Nakai, S. Somiya, Properties of zirconia toughened mullite synthesized by the sol–gel method, Advances in Ceramics 24 (1988) 119–125.
- [12] M.J. Bannister, J.M. Barnes, Solubility of TiO₂ in ZrO₂, J. Am. Ceram. Soc. 69 (11) (C-269-C-271) 1986.
- [13] A.H. Heuer, N. Claussen, W.M. Kriven, M. Ruhle, Stability of tetragonal ZrO₂ particles in ceramic materials, J. Am. Ceram. Soc. 65 (12) (1982) 642–650.