

Ceramics International 28 (2002) 459–461

www.elsevier.com/locate/ceramint

Short communication

Synthesis of ternary molybdenum carbosilicide

V. Bhata, Sheela K. Ramaseshab,*

^aMaterials Research Centre, Indian Institute of Science, Bangalore 560 012, India ^bMaterials Science Division, National Aerospace Laboratories, Bangalore 560 017, India

Received 28 August 2001; received in revised form 31 August 2001; accepted 10 October 2001

Abstract

Dense compacts of $Mo_{\leqslant 5}Si_3C_{\leqslant 1}$ have been prepared by reactive hot pressing of a mixture of elemental powders of Mo, Si and C. Synthesis temperatures and soaking times have been optimized for obtaining pure $Mo_{\leqslant 5}Si_3C_{\leqslant 1}$. The hardness of pure sample is 14.7 GPa. © 2002 Elsevier Science Ltd and Techna S.r.l. All rights reserved.

Keywords: A. Hot pressing; Synthesis; Molybdenum carbosilicide

1. Introduction

Molybdenum carbosilicide, $Mo_{\leqslant 5}Si_3C_{\leqslant 1}$, a Nowotny phase, [1] is the only ternary phase in the Mo–Si–C system, as identified by Nowotny et al. [2] It belongs to a class of compounds of the general formula $M_{\leqslant 5}Si_3C_{\leqslant 1}$ where M=Zr, Nb, Mn or Mo, [1] has a melting point of about 2100 °C [3], and crystallizes in a hexagonal structure (D88) [1,4]. Its crystallographic formula may be written as $Mo_3^IMo_{\leqslant 2}^{II}Si_3C_{\leqslant 1}$ where C atoms occupy partially the octahedral sites formed by Mo^I atoms. It is proposed [3] that $Mo_{\leqslant 5}Si_3C_{\leqslant 1}$ could not only be a reinforcement second phase but also a new matrix phase for composites based on Mo–Si–C systems. Shobu and coworkers have used $Mo_{\leqslant 5}Si_3C_{\leqslant 1}$ as infiltrants to produce composites with SiC. [5–7]

Preparation of $Mo_{\leqslant 5}Si_3C_{\leqslant 1}$ as a single-phase product is reported to be difficult owing to the small stability region in the phase diagram [8,9]. Suzuki and Niihara have prepared $Mo_{4.8}Si_3C_{0.6}$ as a single phase by reactive hot pressing of elemental powders at 30 MPa and 1500 °C for 1–2 h [3]. Parthe and Jeitschko have prepared a compound of this composition starting from Mo, Si and C powders by hot pressing and annealing at 1600 °C for 12 h in a vacuum furnace [1]. We attempted to synthesize single phase $Mo_{4.8}Si_3C_{0.6}$ in a shorter duration of time by reactive hot pressing of elemental powders at 26 MPa and temperatures ranging from 1600 to 1750 °C in argon atmosphere and succeeded in

E-mail address: sheela@sscu.iisc.ernet.in (S.K. Ramasesha).

obtaining a nearly single-phase product at 1700 °C in a time, as low as 8 min.

2. Experimental

Compounds of the nominal composition Mo_{4.8}Si₃C_{0.6} have been prepared starting from stoichiometric amounts of elemental Mo powder (Aldrich, 99%), silicon powder (Aldrich, 99%) and carbon soot (home made), taken according to the equation

$$4.8\text{Mo} + 3\text{Si} + 0.6\text{C} \rightarrow \text{Mo}_{4.8}\text{Si}_3\text{C}_{0.6}$$
 (1)

The powders were mixed together and hot pressed in a BN coated graphite die (12 mm i.d.) at 26 MPa for 8–30 min in an argon atmosphere at temperatures ranging from 1600 to 1750 °C. After the synthesis, the pellets were polished with 1 μ m diamond paste and characterized by powder x-ray diffraction (Cu K_{α} , Philips Powder Diffractometer), density measurement (Archimedes principle), scanning electron microscopy (Jeol JSM-5600 LV Scanning Electron Microscope) and Vickers hardness measurement (Shimadzu HMV-2000 micro hardness tester).

3. Results and discussion

In all the preparations, $Mo_{\leq 5}Si_3C_{\leq 1}$ is the observed major phase confirming the X-ray diffraction pattern reported in the literature [1,4,10]. The small amounts of

^{*} Corresponding author.

impurity phases are Mo_5Si_3 , Mo_2C and some unidentified phases. Table 1 lists the phases present in these preparations.

For the samples prepared at 1600 and 1650 °C, the amount of the impurity phase, Mo₅Si₃, is comparatively large. At 1700 °C, Mo₅Si₃ is absent. This indicates that during the reaction Mo and Si react to form Mo₅Si₃ first, which then reacts with Si and C to form Mo_{4.8}Si₃C_{0.6}. However, when the preparation temperature is raised to 1750 °C Mo₅Si₃ forms again, probably due to the decomposition of Mo_{4.8}Si₃C_{0.6}. It seems that a temperature of 1700 °C is ideal for short-duration synthesis. Fig. 1 shows the XRD patterns of samples prepared at various temperatures with a fixed soaking time of 15 min.

To find the effect of soaking time, we carried out synthesis experiments at 1700 °C by using different soaking times (Fig. 2). Nearly single phase $Mo_{\le 5}Si_3C_{\le 1}$ is formed at this temperature with a soaking time of just 8 min (Fig. 2a). For this sample only one impurity-line at $2\theta = 39.4^{\circ}$, which corresponds to 100% line of Mo₂C,

Table 1 Impurity phases, density and hardness values of $Mo_{\leqslant 5}Si_3C_{\leqslant 1}$ prepared under different conditions

Soaking temperature, °C	Soaking time, min	Aª	B ^a	Ca	Density, g/cm ³	Hv, GPa
1600	15	16	_	_	7.63	14.8
1650	15	15	24	_	7.12	12.3
1700	8	_	4	_	7.74	14.7
1700	15	_	6	5	7.79	13.8
1700	30	_	9	_	7.64	16.4
1750	15	12	_	_	7.59	18.0

 $[\]label{eq:model} \begin{array}{l} ^aA = 100*I_{60}~(Mo_5Si_3)/I_{100}~(Mo_{4.8}Si_3C_{0.6}),~B = 100*I_{100}~(Mo_2C)/I_{100}\\ Mo_{4.8}Si_3C_{0.6})~C = 100*I_{100}~(unidentified~phase)/I_{100}~(Mo_{4.8}Si_3C_{0.6}). \end{array}$

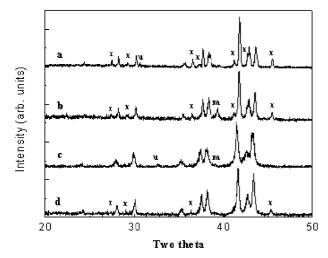


Fig. 1. X-ray powder patterns of $Mo_{\leqslant}Si_3C_{\leqslant}1$ samples prepared at (a) 1600, (b) 1650, (c) 1700 and (d) 1750 °C, with a fixed soaking time of 15 min. ($x = Mo_5Si_3$, $m = Mo_2C$, u = unidentified phase.)

is present. Therefore, under these synthesis conditions it is possible to obtain nearly single phase $Mo_{\leqslant 5}Si_3C_{\leqslant 1}.$ Fig. 3 shows the SEM image of this sample. At higher soaking times, the amount of Mo_2C increases. Suzuki and Niihara [3] have observed the formation of Mo_2C in their preparations when the Si-content in the starting mixture was slightly less than that required for single-phase formation. Therefore, formation of Mo_2C in our preparations may be due to the volatilization of a small amount of Si from the reaction mixture during high-temperature treatment.

Table 1 also includes densities of the compacts obtained. We find that the highest density is obtained when the preparation is carried out at 1700 °C for 15 min. The Vickers hardness value for the pure sample, as indicated in Table 1, is 14.7 GPa. These values are higher than those reported by Suzuki and Niihara [3] (11.0–12.6 GPa for monolithic $Mo_{\leq 5}Si_3C_{\leq 1}$). When the

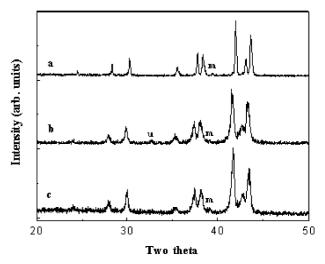


Fig. 2. X-ray powder patterns of $Mo \le sSi_3C \le 1$ samples prepared at 1700 °C with soaking times of (a) 8 min, (b) 15 min and (c) 30 min. ($m = Mo_2C$, u = unidentified phase.)

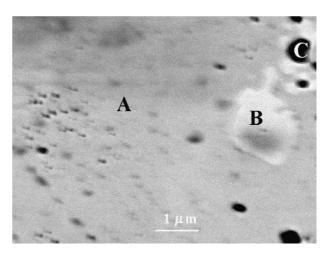


Fig. 3. Scanning electron micrograph of a sample prepared at 1700 °C with soaking of 8 min. ($A = Mo_{\le 5}Si_3C_{\le 1}$, $B = Mo_2C$, C = pore.)

impurity phases are present in considerable amounts, the hardness value is found to be different; the sample prepared at 1750 °C has a hardness of 18 GPa.

4. Conclusion

It is possible to prepare almost single-phase dense compacts of $Mo_{\leqslant 5}Si_3C_{\leqslant 1}$ by reactive hot pressing of elemental powders at 26 MPa and 1700 °C for 8–15 min. The materials so synthesized have Vickers hardness of 13–15 GPa.

Acknowledgements

Financial support by CSIR is gratefully acknowledged. We thank Mr. K.R. Kannan and Professor

Seshan for recording SEM images and Vicker's hardness, respectively. S.K.R. thanks UGC for her fellowship.

References

- [1] E. Parthe, W. Jeitschko, Acta Crystallogr. 19 (1965) 1031.
- [2] H. Nowotny, E. Parhte, R. Kieffer, F. Benesovsky, Mh. Chem. 85 (1954) 255.
- [3] Y. Suzuki, K. Niihara, Intermetallics 6 (1998) 7.
- [4] J.L. Garin, L.R. Mannheim, Powder Diffraction 8 (1993) 65.
- [5] Q. Zhu, K. Shobu, J. Mater. Sci. Lett. 19 (2000) 153.
- [6] Q. Zhu, K. Shobu, J. Mater. Sci. Lett. 19 (2000) 1529.
- [7] Q. Zhu, K. Shobu, E. Tani, K. Kishi, S. Umebayashi, J. Mater. Sci. 35 (2000) 863.
- [8] J.S. Jayashankar, E.N. Ross, P.D. Eason, M.J. Kaufman, Mater. Sci. Eng. A A239 (240) (1997) 485.
- [9] E.N. Ross, M.J. Kaufman, Ceram. Eng. Sci. Proc. 19 (1998) 421.
- [10] JCPDS pattern No. 43-1199 of Mo_{4.8}Si₃C_{0.6}.