

Ceramics International 28 (2002) 931–934

www.elsevier.com/locate/ceramint

Effect of Al₂O₃ on mechanical properties of Ti₃SiC₂/Al₂O₃ composite

H.J. Wang^{a,*}, Z.H. Jin^a, Y. Miyamoto^b

^aSchool of Material Science & Engineering, Xi'an Jiaotong University, Xi'an Shaanxi 710049, People's Republic of China ^bJoining and Welding Research Institute, Osaka University, Ibaraki 567, Osaka, Japan

Received 8 February 2002; received in revised form 6 March 2002; accepted 15 April 2002

Abstract

The effect of Al_2O_3 on mechanical properties of Ti_3SiC_2/Al_2O_3 composite fabricated by SPS was studied systematically. The results show that the hardness of the Ti_3SiC_2/Al_2O_3 composite can reach 10.28 GPa, 50% higher than that of pure Ti_3SiC_2 . However, slight decrease in the other mechanical properties was observed with Al_2O_3 addition higher than 5–10 vol.%, which is believed to be due to the agglomeration of Al_2O_3 in the composite.

© 2002 Elsevier Science Ltd and Techna S.r.l. All rights reserved.

Keywords: B. Composites; C. Mechanical properties; D. Al₂O₃; Ti₃SiC₂; Agglomeration

1. Introduction

Ti₃SiC₂ is a remarkable material for its combination of properties such as high toughness, high fatigue-crack growth threshold, high Young's modulus, moderate flexural strength, plasticity at high temperature, good electrical conductivity, excellent chemical resistance, high thermal shock resistance, easy machinability, etc. [1–5]. It is expected, therefore, to apply Ti₃SiC₂ to various tough components such as commutating brushes for motors, armor, bearing and turbine blades. However, its relatively low hardness (4–5 Gpa) [6,7], leads to poor wear resistance, which limits its application as a structural component.

It has been shown that the addition of Al_2O_3 can increase the hardness of some silicon-based composites. This motivated the study in this paper to fabricate the Ti_3SiC_2/Al_2O_3 composite directly from raw powders of $Ti/TiC/Si/Al_2O_3$ using the spark plasma sintering (SPS) technique. The mechanical properties of the composites with different Al_2O_3 content were compared, assisted with the microstrutural observation on the fracture surface.

E-mail address: hjwang@mail.xjtu.edu.cn (H.J. Wang).

2. Experimental procedure

High-purity powders of titanium (45 μ m, Grade TSPT-350, Sumitomo Sitix of Amagasaki, Inc, Japan), TiC (1.36 μ m, New metal Co, Ltd, Japan), Si (purity>99.99%, 200 mesh, High purity Chemical Co, Ltd, Japan) and Al₂O₃ (AKP-30, Sumitomo Chemical Co. Japan) were mixed to yield a final composition with the appropriate stoichiometry, as shown in Table 1.

The powder mixtures were pressed in a graphite die with 30 mm inner diameter. Then the green compacts were hot pressed in the SPS system at 40 MPa in vacuum. The sintering temperature was $1200-1400~^{\circ}$ C, with soaking time ranging from 5 to 15 min and a heating rate of 100~K/min.

The surfaces of the sintered samples were machined to remove the layer contaminated by the carbon sheet, using a fine grit, high speed diamond wheel.

X-ray diffraction (XRD) was used to determine the phase composition and relative Ti₃SiC₂ content in the composite. The sample density and porosity were measured by Archimedes' method. Samples for Vickers hardness measurement were polished with diamond paste. An Ultra-Micro Indentation System (UMIS-2000) was used for the measurement with 15 s holding time at a load of 98 N.

^{*} Corresponding author. Tel.: +86-29-2667942; fax: +86-29-3237910

Table 1
The volume content of Al₂O₃ in the designed compositions

No.	Ti ₃ SiC ₂ (vol.%)	Al ₂ O ₃ (vol.%)
1	95	5
2	90	10
3	80	20

Specimens for flexural strength and $K_{\rm IC}$ tests were cut and ground. The three-point bending flexural strength was measured on Instron-1195 machine with cross head speed of 0.5 mm/min and span of 18 mm. The fracture toughness measurement was conducted using the single-edge notched beam (SENB) method with the specimen dimensions of $3\times4\times20$ mm. The pre-crack was introduced by indentation in the middle of the specimen on an Instron 1195 machine. The microstructure and fracture surface of selected samples were observed by SEM (Jeol, made in Japan) and EPMA (JXA-8600, made in Japan).

3. Results and discussion

3.1. Effect of Al_2O_3 on properties of Ti_3SiC_2/Al_2O_3

Fig. 1 shows the density and hardness of the Ti₃SiC₂/Al₂O₃ composites as a function of the Al₂O₃ volume content. All the samples were sintered at 1300 °C for 10 min. The density does not show much variance for Al₂O₃ content between 0 and 20 vol.%. However, a significant increase in hardness is observed when the Al₂O₃ content exceeds 10%. The Ti₃SiC₂/20 vol. % Al₂O₃ composite shows a hardness value of 10.29 Gpa, which is 50% higher than that of the pure Ti₃SiC₂ (6.69 GPa). Fig. 2 shows the Ti₃SiC₂ phase content as a function of Al₂O₃ content sintered at 1300°c for 10 min. When the Al₂O₃ content increases from 0 to 10 vol.%, the

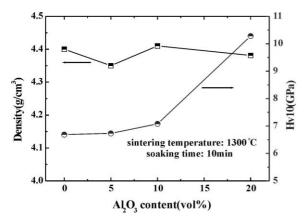


Fig. 1. The effect of Al_2O_3 on the density and hardness of Ti_3SiC_2/Al_2O_3 composite.

volume content of Ti_3SiC_2 also increases from 92 to 96%. The content of Ti_3SiC_2 gradually decreases when the Al_2O_3 content exceeds 10 vol.%.

Fig. 3 shows the effect of Al_2O_3 content on the flexural strength and fracture toughness of the composite sintered at 1300 °C for 10 min under 40 Mpa pressure. A gradual increase in σ_b and K_{IC} is observed for Al_2O_3 lower than 5–10 vol.%. Further increase of Al_2O_3 content slightly decreases the composite strength, yet the toughness almost remains constant.

3.2. Microstructure observation

Fig. 4 shows the microstructure of some selected ${\rm Ti_3SiC_2/Al_2O_3}$ specimens sintered at 1200 °C for 5 min. The ${\rm Al_2O_3}$ grains are uniformly distributed in the grain boundary [Fig. 4(e),(f)]. The pure ${\rm Ti_3SiC_2}$ sample shows an average grain size of 10 µm. With increasing ${\rm Al_2O_3}$ content, a finer microstructure is obtained with decreasing grain size. For the ${\rm Ti_3SiC_2/10\%Al_2O_3}$ composite, the average grain size is only 1 µm, which could

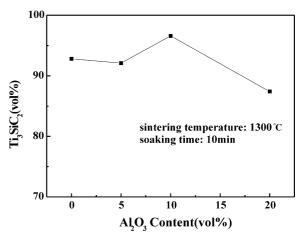


Fig. 2. The effect of Al_2O_3 on the Ti_3SiC_2 content of Ti_3SiC_2/Al_2O_3 composite.

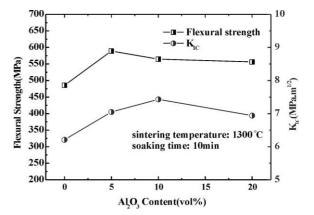


Fig. 3. The effect of Al_2O_3 on the flexural strength and fracture toughness of Ti_3SiC_2/Al_2O_3 composite.

be responsible for the slight increase in σ_b and K_{IC} . Such microstructural evolution can be understood if it is postulated that the Al_2O_3 grains inhibit grain growth and the grain-boundary mobilities. But when the Al_2O_3 content exceeds 10vol%, the agglomeration of the Al_2O_3 grains is observed [Fig. 4(f)], lead to the decrease in σ_b and K_{IC} .

Fig. 5 shows the microstructure evolution of Ti₃SiC₂/10 vol.%Al₂O₃ sintered at 1400 °C for 5 min. Compared with Fig. 4(c), higher sintering temperatures results in coarser-grained microstructure. Fig. 5(b) shows the

dispersion of Al_2O_3 in the composite. Compared with Fig. 4(e), the agglomeration of Al_2O_3 can be seen more obviously in the 1400 °C sintered sample, which consists of partially sintered Al_2O_3 . When the temperature reaches 1400 °C, the grain size becomes larger, which may be the reason for the decrease of σ_b . But because of the card-frame structure is unaffected at this temperature, the fracture toughness does not change obviously [8].

In conclusion, this study has shown the improvement of the hardness of Ti₃SiC₂ material with addition of

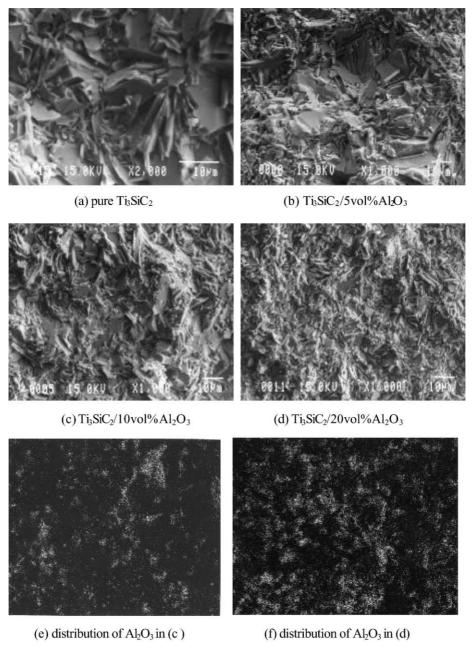


Fig. 4. Fracture surface and distribution of Al₂O₃.

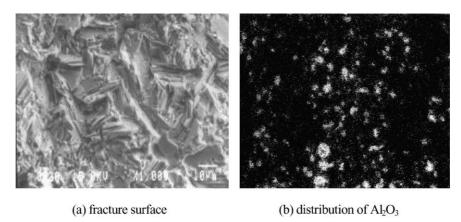


Fig. 5. Fracture surface and distribution of Al₂O₃ of Ti₃SiC₂/10 vol.%Al₂O₃ sintered at 1400 °C.

 Al_2O_3 . Suitable Al_2O_3 content is about 10–20 vol.%. The sintering temperature should not exceed $1350^{\circ}C$; otherwise the agglomeration of Al_2O_3 occurs and decreases the composite strength and toughness.

4. Conclusion

- 1. Al₂O₃ is an effective dopant to increase the hardness of Ti₃SiC₂. The Ti₃SiC₂/20vol%Al₂O₃ composite shows hardness of about 10.28 GPa, which is 50% higher than that of pure Ti₃SiC₂.
- 2. The addition of Al₂O₃ slightly decreases the other properties, such as Ti₃SiC₂ content, strength and fracture toughness, of composite.
- 3. It is viable to add some Al₂O₃ to Ti₃SiC₂ in order to increase its wearability, and the appropriate content is about 10–20 vol.%.

References

- E.R. Tamer, M.W. Barsoum, Processing and mechanical properties of Ti₃SiC₂: I, reaction path and microstructure evolution, J. Am. Ceram. Soc. 82 (10) (1999) 2849–2854.
- [2] E.R. Tamer, M.W. Barsoum, et al., Processing and mechanical properties of Ti₃SiC₂: II, effect of grain size and deformation temperature, J. Am. Ceram. Soc. 82 (10) (1999) 2855–2860.
- [3] M. Radoric, M.W. Barsoum, et al., Tensile properties of Ti_3SiC_2 in the 25–1300 °C temperature range, Acta Mater. 48 (2000) 457–459.
- [4] M.W. Barsoum, T. EI-Raghy, Synthesis and characterization of a remarkable ceramic: Ti₃SiC₂, J. Am. Ceram. Soc. 79 (7) (1996) 1953–1956.
- [5] M.W. Barsoum, T. EI-Raghy, et al., Oxidation of Ti₃SiC₂ in air, J. Electrochem. Soc. 144 (1997) 2508–2516.
- [6] I.M. Low, Vickers contact damage of micro-layered Ti₃SiC₂, J. Eur. Ceram. Soc. 18 (1998) 709–713.
- [7] T. EI-Raghy, A. Zaraliangos, et al., Damage mechanisms around hardness indentations in Ti₃SiC₂, J. Am. Ceram. Soc. 80 (3) (1997) 513–516.
- [8] H.J. Wang, Z.H. Jin, Y. Miyamato. Ti₃SiC₂/Al₂O₃ composite prepared by SPS, J. Eur. Ceram. Soc. (submitted for publication).