

Ceramics International 29 (2003) 707-712

www.elsevier.com/locate/ceramint

The effect of starting powder on the microstructure development of alumina—aluminum titanate composites

Sang-Yeup Parka,b,*, Sug-Woo Jungb, Yung-Bin Chunga

^aDepartment of Ceramics Engineering, Kangnung National University, Kangnung, Kangwondo 210-702, South Korea ^bTechnology Innovation Center for Fine Ceramics, Kangnung National University, Kangnung, Kangwondo 210-702, South Korea

Received 12 May 2002; received in revised form 30 May 2002; accepted 12 September 2002

Abstract

The effect of starting powder on Al₂TiO₅ morphology and grain growth of Al₂O₃ was investigated in alumina–aluminum titanate composites using Al₂O₃, TiO₂ and calcined Al₂TiO₅ as starting powders. Depending on the composition of starting powders, various Al₂TiO₅ morphologies, such as rod-like, polyhedron-like, and irregular shape were observed. When Al₂O₃ and TiO₂ were used as starting powder, the rod-like shape and the irregular shape of Al₂TiO₅ were observed. In the addition of calcined Al₂TiO₅ as starting powder, however, the polyhedron-like shape and the irregular shape of Al₂TiO₅ were observed. When the starting powder was consisted of Al₂O₃ and TiO₂, alumina-aluminum titanate composites provided more narrow size distribution and smaller average size of Al₂O₃ grains compared to those consisting of Al₂O₃ and Al₂TiO₅.

© 2003 Elsevier Ltd and Techna S.r.l. All rights reserved.

Keywords: A. Grain growth; B. Composites; D. Al₂O₃; D. Al₂TiO₅; Morphology

1. Introduction

Aluminum titanate, Al₂TiO₅, is known to be a promising candidate material for the application fields of refractory and engine components because of its low thermal expansion, excellent thermal shock resistance, and low thermal conductivity [1]. In general, aluminum titanate can be formed by the solid-state reaction between Al₂O₃ and TiO₂ above the eutectoid temperature 1280 °C. Because aluminum titanate can be dissociated to alumina and rutile in the temperature range 750–1280 °C, however, the stabilizers such as Fe₂O₃, MgO or SiO₂ are needed to overcome such dissociation [2–5].

In alumina-based composites, much attention has been focused on the improvement of fracture toughness in alumina either by the addition of second phase or by the microstructure designs such as duplex [6] or duplex-bimodal [7], heterogeneous [8–10], and layer structures [11–13]. The addition of Al₂TiO₅ to Al₂O₃ improves the fracture toughness of alumina due to the enhancement

E-mail address: sypark@knusun.kangnung.ac.kr (S.-Y. Park).

of the local residual stress induced by the difference of thermal expansion coefficient between Al_2O_3 and Al_2TiO_5 [7,14]. Considering the toughening mechanisms in alumina-based composites materials, it is important to control the microstructure of matrix as well as the morphology of second-phase [15]. However, the morphology control of Al_2TiO_5 and its effect on grain growth of Al_2O_3 matrix have not been investigated yet in alumina–aluminum titanate composites [1,14,16–20].

The present work is aimed at the investigating of the effect of starting powders on morphology of Al₂TiO₅ and grain growth behavior of Al₂O₃. Also, the shape formation process of Al₂TiO₅ grain was discussed in terms of coalescence behavior via pore trapping process.

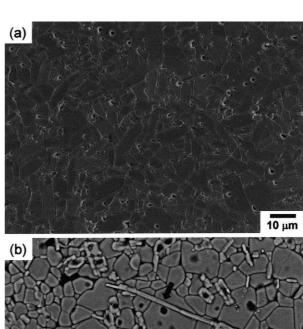
2. Experimental

Samples were prepared from commercial α -Al₂O₃ (\sim 0.3 μ m average size, \sim 99.999% purity, AKP-50, Sumitomo Chemicals, Japan) and TiO₂ (\sim 0.5 μ m average size, \sim 99.9% purity, Sigma-Aldrich, USA) powders. Al₂TiO₅ powder (\sim 5.1 μ m average size) was prepared from the calcination of equimolar mixtures of Al₂O₃ and TiO₂ at 1300 °C for 3 h in air. The compositions of the

^{*} Corresponding author. Tel.: +82-33-640-2363; fax: +82-33-640-2244

starting powder are listed in Table 1. T(5), T(10), and T(20) mean the samples using TiO₂ as starting powder, resulting in the composition of $Al_2O_3-05Al_2TiO_5$ (wt.%), $Al_2O_3-10Al_2TiO_5$, and $Al_2O_3-20Al_2TiO_5$, respectively. AT(5), AT(10), and AT(20) mean the samples using calcined Al_2TiO_5 as starting powder, resulting in the composition of $Al_2O_3-5Al_2TiO_5$, $Al_2O_3-10Al_2TiO_5$, and $Al_2O_3-20Al_2TiO_5$, respectively.

The proportioned powders were mixed by wet-milling in a teflon jar using Si_3N_4 balls as milling media for 3 h. The slurries were dried and then sieved to $\sim\!200$ mesh. The powders were isostatically pressed under $\sim\!200$ MPa, and then sintered at 1600 °C for 1 h in air. The sintered samples were polished to a 1 μm finish and thermally etched at 1450 °C for 20 min in air. Average grain size and grain size distribution were determined by measuring each grain using image analyzer (Omnimet Advantage, Buehler, USA). About 400 grains were measured for each sample.


3. Results and discussion

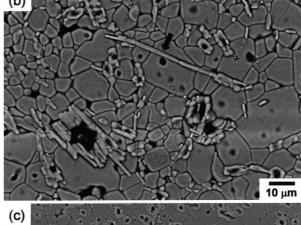

Fig. 1 shows the SEM micrographs of (a) T(5), (b) T(10), and (c) T(20) samples sintered at 1600 °C for 1 h in air using Al₂O₃, TiO₂ as starting powder. Darker grains are Al₂O₃ and lighter grains are Al₂TiO₅. The grain shape of Al₂TiO₅ shows an irregular in T(5) and T(20) samples of Fig. 1(a) and (c), whereas a rod-like shape in T(10) sample of Fig. 1(b). The rod-like shape of Al₂TiO₅ indicated by the arrow in Fig. 1(b) exhibited the aspect ratio up to \sim 21. As an interesting result, the Al₂TiO₅ particles with rod-like shape were observed and the Al₂TiO₅ particles were located at the junction of Al₂O₃ grains with trapped pores. Fig. 2 shows the SEM micrographs of (a) AT(5), (b) AT(10), and (c) AT(20) samples sintered at 1600 °C for 1 h in air using calcined Al₂TiO₅ as starting powder. Compared to T-series samples, Al₂TiO₅ particles in AT-series samples showed irregular or polyhedron-like shapes without showing any rod-like shape. Similar to the T-series samples, Al₂TiO₅ particles were located at the junction of Al₂O₃ grains with trapped pores.

Fig. 3 shows the SEM micrographs of (a) T(20), (b) T(10), and (c) AT(5) samples showing Al₂TiO₅ particles of irregular, rod-like, and polyhedron-like shapes, respectively. Regardless of shapes, the Al₂TiO₅ particles were composed of single or poly-grains. A possible explanation might be that Al₂TiO₅ poly-grains were coalescenced into a single grain, and pores were trapped into the Al₂TiO₅ grain during the coalescence process. From the careful observation of Al₂TiO₅ grains, trapped pores were disappeared during the successive coarsening of Al₂TiO₅. Taruta et al. showed that Al₂TiO₅ particles formed by the reaction between Al₂O₃ and TiO₂ at the junction of Al₂O₃ grains [21]. When the Al

Table 1
The compositions of starting powder used for alumina-aluminum titanate composites

Sample	Compositions (wt.%)	Starting powders
T(5) T(10) T(20)	Al ₂ O ₃ –5Al ₂ TiO ₅ Al ₂ O ₃ –10Al ₂ TiO ₅ Al ₂ O ₃ –20Al ₂ TiO ₅	Al ₂ O ₃ , TiO ₂ Al ₂ O ₃ , TiO ₂ Al ₂ O ₃ , TiO ₂
AT(5) AT(10) AT(20)	$\begin{array}{l} Al_2O_3 - 5Al_2TiO_5 \\ Al_2O_3 - 10Al_2TiO_5 \\ Al_2O_3 - 20Al_2TiO_5 \end{array}$	Al ₂ O ₃ , Al ₂ TiO ₅ Al ₂ O ₃ , Al ₂ TiO ₅ Al ₂ O ₃ , Al ₂ TiO ₅

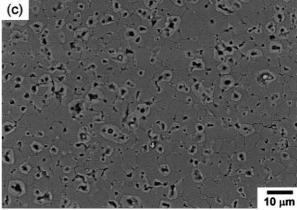


Fig. 1. SEM micrographs of (a) T(5), (b) T(10), and (c) T(20) samples sintered at 1600 °C for 1 h in air using TiO_2 as a starting powder. The arrow in (b) shows a rod-like Al_2TiO_5 precipitate of which aspect ratio is up to \sim 21.

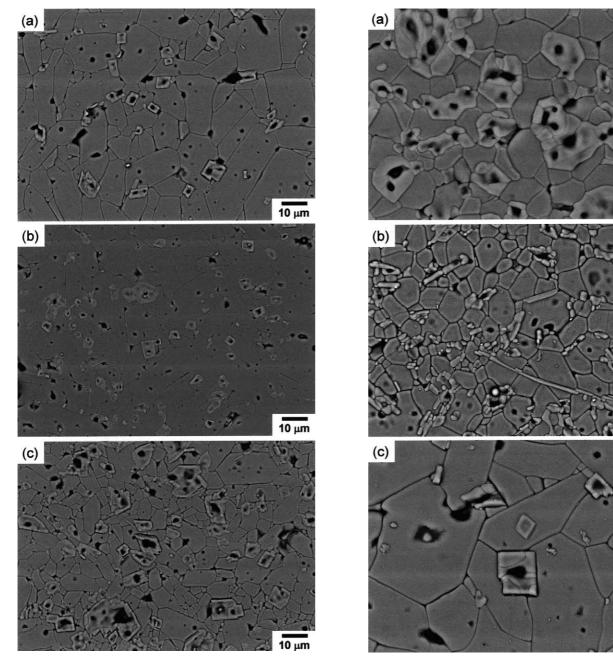


Fig. 2. SEM micrographs of (a) AT(5), (b) AT(10), and (c) AT(20) samples sintered at 1600 $^{\circ}$ C for 1 h in air using calcined Al₂TiO₅ as a starting powder.

Fig. 3. SEM micrographs of (a) T(20), (b) T(10), and (c) AT(5) samples showing Al_2TiO_5 particles of irregular, rod-like, and polyhedron-like shapes, respectively.

ions were supplied easily for the growth, Al_2TiO_5 particle might be nucleated on the Al_2O_3 grains. Once the small size of Al_2TiO_5 particles grow and contact with each other, a large Al_2TiO_5 poly-grain forms at the junction of Al_2O_3 grains.

When the Al_2TiO_5 particles grow faster until pore closure occurs, pore remains at the inside of Al_2TiO_5 poly-grain. Depending on the pore size after pore closure, a small pore disappears and a large pore will remain at the inside of Al_2TiO_5 poly-grain. During the

successive coarsening of Al₂TiO₅, the large pore shrinks and then the pore moves into the center region of Al₂TiO₅ poly-grain. Such mechanism of pore shrinkage is somewhat different compared to normal grain growth; i.e. when the pores were located at the inside of grain, such pores could not be eliminated even if high external pressure was applied.

The precipitate shapes are closely related with the interface coherency between precipitate and matrix [22]. When the precipitate is especially located on grain

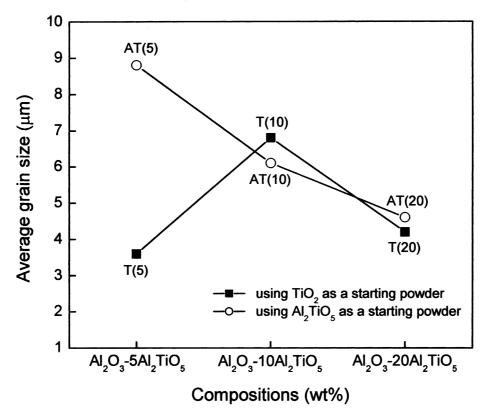


Fig. 4. Variation of average grain size of Al₂O₃ in T-series and AT-series samples. T(5) sample shows the smallest Al₂O₃ grain size.

boundary, it is necessary to consider the types of interface between two different grain orientations. The minimization of interfacial energy leads to planar (semi-) coherent interfaces and smoothly curved incoherent interfaces although the interfacial tensions and torques must be balanced at the intersection between the precipitate and the matrix [22]. Al₂TiO₅ precipitates are located at the junction of Al₂O₃ grains and form interfaces with more than three differently oriented grains. Even though the situation is more complex comparing with a precipitate on grain boundaries, the entire shape of the Al₂TiO₅ precipitate will, therefore, become irregular shape, such as T(5) and T(20) samples showing in Fig. 1, because their interfaces can be mixed with planar and smoothly curved interfaces. On the other hand, in the case of partially coherent precipitates which have (semi-) coherent and incoherent interfaces at the same time, the incoherent interface grows faster than the (semi-) coherent one because of higher interfacial energy [22]. It is feasible that Al₂TiO₅ precipitates become partially coherent as the amount of Al₂TiO₅ increase, in respect to that the interface of a precipitate varies from (semi-) coherent to incoherent as the precipitates grow [22]. Therefore, we suppose that Al₂TiO₅ precipitates became rod-like shape such as the T(10) sample in Fig. 1(b) because of partially coherent interface.

In the addition of Al₂TiO₅ particles as starting powder in AT-series, the Al₂TiO₅ particles wouldn't react with Al₂O₃ grains, but only coalescence with each other at the junction of Al₂O₃ grains during sintering. If the polygonization of Al₂TiO₅ particles, of which crystal structure is end-centered orthorhombic [2], proceeds with sintering before the complete besiegement of Al₂O₃ grains, it is possible that Al₂TiO₅ particles will have polyhedron-like shapes such as the AT-series samples shown in Fig. 2.

Fig. 4 shows the variation of average grain size of Al₂O₃ in T-series and AT-series samples. T(5) and T(20) samples, except for T(10) sample, have smaller average grain sizes of Al₂O₃ than AT-series samples. In addition, the average grain sizes of Al₂O₃ in AT-series samples decreases with increasing the Al₂TiO₅ content, whereas the average grain sizes of Al₂O₃ in T-series samples increase with increasing the Al₂TiO₅ content. Fig. 5 shows the grain size distribution of Al₂O₃ in six samples, as shown in Fig. 4. T-series samples exhibited more narrow size distribution and small grain size compared to those of AT-series samples. This grain growth behavior of Al₂O₃ in AT-series indicates that Al₂TiO₅ particles act as an inhibitor for grain growth. In contrast, the unique behavior of Al₂O₃ in T(10) sample, resulting in accelerating the grain growth of some of Al₂O₃, is supposed to the rapid growth of rod-like Al₂TiO₅ precipitates due to the local increase of Al ions.

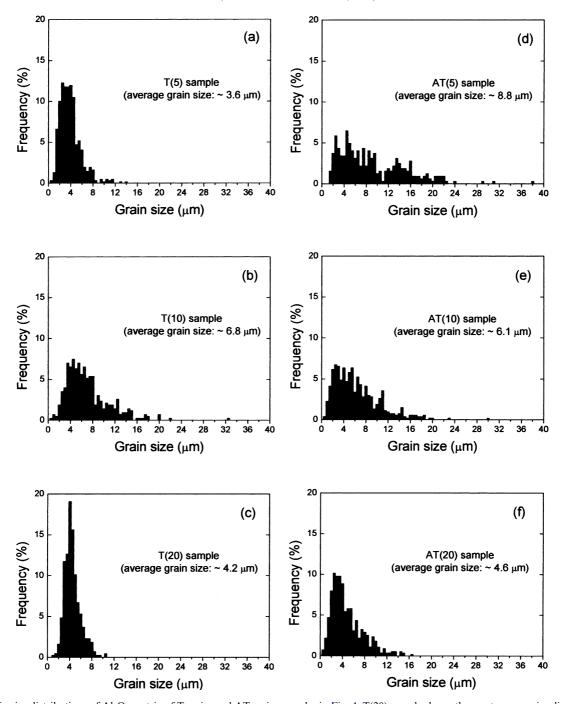


Fig. 5. Grain size distributions of Al_2O_3 matrix of T-series and AT-series samples in Fig. 4. T(20) sample shows the most narrow size distribution of Al_2O_3 grains.

4. Conclusions

In this study, the effect of starting powders on the Al₂TiO₅ morphology and the grain growth behavior of Al₂O₃ was investigated in alumina-aluminum titanate composites. When Al₂O₃ and TiO₂ were used as starting powders, the rod-like shape of Al₂TiO₅ was changed into the irregular shape with increasing the Al₂TiO₅ content. When Al₂O₃ and calcined Al₂TiO₅ were used as starting powders, the polyhedron-like shape of Al₂TiO₅

was changed into the irregular shape with increasing the Al₂TiO₅ content. The trapped pores inside of Al₂TiO₅ grain were explained by the coalescence behavior of small Al₂TiO₅ particles. Based on the grain growth behavior of Al₂O₃, when we are aiming at more narrow size distribution and smaller average size of Al₂O₃ grains in alumina-aluminum titanate composites, it would be more helpful to use Al₂O₃ and TiO₂ as starting powder than those using Al₂O₃ and Al₂TiO₅.

References

- I.M. Low, Synthesis and properties of in situ layered and graded aluminum titanate/alumina composites, Mater. Res. Bull. 33 (10) (1998) 1475–1482.
- [2] H.A.J. Thomas, R. Stevens, Aluminium titanate—a literature review. Part 1: microcracking phenomena, Trans. Br. Ceram. Soc. 88 (1989) 144–151.
- [3] E. Kato, K. Daimon, J. Takahashi, Decomposition temperature of β-Al₂TiO₅, J. Am. Ceram. Soc. 63 (5-6) (1980) 355–356.
- [4] L. Zhien, Z. Qingmin, Y. Jianjun, The effects of additives on the properties and structure of hot-pressed aluminum titanate ceramics, J. Mater. Sci. 31 (1996) 90–94.
- [5] T.S. Liu, D.S. Perera, Long-term thermal stability and mechanical properties of aluminium titanate at 1000–1200 °C, J. Mater. Sci. 33 (1998) 995–1001.
- [6] M.P. Harmer, H.M. Chan, G.A. Miller, Unique opportunities for microstructural engineering with duplex and laminar ceramic composites, J. Am. Ceram. Soc. 75 (7) (1992) 1715–1728.
- [7] N.P. Padture, S.J. Bennison, H.M. Chan, Flaw-tolerance and crack-resistance properties of alumina–aluminum titanate composites with tailored microstructures, J. Am. Ceram. Soc. 76 (9) (1993) 2312–2320.
- [8] P.L. Chen, I.W. Chen, In-situ alumina/aluminate platelet composites, J. Am. Ceram. Soc. 75 (9) (1992) 2610–2612.
- [9] J. Wang, C.B. Ponton, P.M. Marquis, Silver-toughened alumina ceramics, Br. Ceram. Trans. 92 (2) (1993) 67–74.
- [10] L. An, H.M. Chan, R-curve behavior of in-situ-toughened Al₂O₃:CaAl₁₂O₁₉ ceramic composites, J. Am. Ceram. Soc. 79 (12) (1996) 3142–3148.
- [11] C.J. Russo, M.P. Harmer, H.M. Chan, G.A. Miller, Design of a laminated ceramic composite for improved strength and toughness, J. Am. Ceram. Soc. 75 (12) (1992) 3396–3400.

- [12] P.E.D. Morgan, D.B. Marshall, Ceramic composites of monazite and alumina, J. Am. Ceram. Soc. 78 (6) (1995) 1553–1563.
- [13] L. An, H.M. Chan, N.P. Padture, B.R. Lawn, Damage-resistant alumina-based layer composites, J. Mater. Res. 11 (1) (1996) 204– 210.
- [14] J.F. Bartolomé, J. Requena, J.S. Moya, M. Li, F. Guiu, Cyclic fatigue crack growth resistance of Al₂O₃–Al₂TiO₅ composites, Acta Mater. 44 (4) (1996) 1361–1370.
- [15] B.R. Lawn, Fracture of Brittle Solids, Cambridge University Press, 1996, pp. 72–85, 202–206.
- [16] S.C. Lee, P.G. Wahlbeck, Chemical kinetics and mechanism for the formation reaction of Al₂TiO₅ from alumina and titania, High Temp. Sci. 21 (2) (1986) 27–40.
- [17] B. Freudenberg, A. Mocellin, Aluminum titanate formation by solid-state reaction of fine Al₂O₃ and TiO₂ powders, J. Am. Ceram. Soc. 70 (1) (1987) 33–38.
- [18] B. Freudenberg, A. Mocellin, Aluminum titanate formation by solid-state reaction of coarse Al₂O₃ and TiO₂ powders, J. Am. Ceram. Soc. 71 (1) (1988) 22–28.
- [19] D.P.H. Hasselman, K.Y. Donaldson, E.M. Anderson, T.A. Johnson, Effect of thermal history on the thermal diffusivity and thermal expansion of an alumina-aluminum titanate composite, J. Am. Ceram. Soc. 76 (9) (1993) 2180–2184.
- [20] L.A. Stanciu, J.R. Groza, Effect of high heating rates on microstructure of alumina and aluminum titanate ceramics, Microscopy and Microanalysis 7 (2) (2001) 414–415.
- [21] S. Taruta, Y. Itou, N. Takusagawa, K. Okada, N. Otsuka, Influence of aluminum titanate formation on sintering of bimodal size-distributed alumina powder mixtures, J. Am. Ceram. Soc. 80 (3) (1997) 551–556.
- [22] D.A. Porter, K.E. Eastering, Phase Transformations in Metals and Alloys, Van Nostrand Reinhold Company, New York, 1981, pp. 142–161.