

Ceramics International 30 (2004) 1187-1190

www.elsevier.com/locate/ceramint

Influence of V_2O_5 substitutions to $Bi_2(Zn_{1/3}Nb_{2/3})_2O_7$ pyrochlore on sintering temperature and dielectric properties

Geun-Kyu Choi, Dong-Wan Kim, Seo-Yong Cho*, Kug Sun Hong

 ^a School of Materials Science and Engineering, College of Engineering, Seoul National University, Shinrim-dong, San 56-1, Kwanack-Ku, Seoul, South Korea
^b Cerectron, 284 Kalgot, Jinwee, PyungTaek, Kyunggi, South Korea

Received 28 November 2003; received in revised form 14 December 2003; accepted 22 December 2003

Available online 25 June 2004

Abstract

The dielectric properties of the monoclinic zirconolite-like structure compound, $\text{Bi}_2(\text{Zn}_{1/3}\text{Nb}_{2/3}_x\text{V}_x)_2\text{O}_7$ ($0 \le x \le 0.1$), were investigated. We found a small vanadium substitution (x) to $\text{Bi}_2(\text{Zn}_{1/3}\text{Nb}_{2/3})_2\text{O}_7$ ceramics lowered sintering temperature from 950 to 850 °C. Low-temperature sintered $\text{Bi}_2(\text{Zn}_{1/3}\text{Nb}_{2/3}_x\text{V}_x)_2\text{O}_7$ maintained high dielectric constant (ε_r), \sim 80 and Qxf value, \sim 3000 at 6 GHz. By increasing x, second phase, bismuth vanadate ($\text{Bi}_4\text{V}_2\text{O}_{11}$) was detected. The formation of second phase is accompanied by a significant decrease in dielectric loss. It was found that $\text{Bi}_2(\text{Zn}_{1/3}\text{Nb}_{2/3})_2\text{O}_7$ had two phases, one was for the stoichiometric composition and the other was for Bi-deficient composition. The chemical compatibility of silver electrode and $\text{Bi}_2(\text{Zn}_{1/3}\text{Nb}_{2/3}_x\text{V}_x)_2\text{O}_7$ (x = 0.005) has also been investigated using SEM micrograph and EDS line scan of the interface between a silver electrode and the ceramic body, for low-temperature cofired ceramics (LTCC) applications.

© 2004 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Sintering; B. X-ray methods; C. Dielectric properties; E. Capacitors

1. Introduction

Multilayer microwave components have been investigated to miniaturize passive devices for volume efficiency and low-temperature cofired ceramics (LTCC) are required for manufacturing multilayer components. In the case of LTCC, low-melting-point glasses are frequently added as sintering aids and the resulting ceramic-glass dielectrics can be cofired with low-resistivity conductor layers, such as silver. By the way, V_2O_5 has been also used as a sintering aid for the materials, such as BiNbO₄, SrBi₂Nb₂O₇, and Pb(Zr,Ti)O₃, etc. [1–3] because V_2O_5 has low melting temperature of $\sim 690\,^{\circ}$ C.

Recently, bismuth-based dielectric ceramics have been studied for its relatively low sintering temperature (less than $1000\,^{\circ}$ C) and high dielectric constant [4]. Bi₂(Zn_{1/3}Nb_{2/3})₂O₇ ceramics with a dielectric constant in the range of 80–210, dielectric losses ($\tan \delta$) as low as 1×10^{-4} at frequency of 1 MHz, were reported [5,6]. But

not much work has been done on the sintering behaviors and related dielectric properties as LTCC materials.

In our study, as a way of lowering sintering temperature, Nb ion was substituted with V ion in Bi₂($Zn_{1/3}Nb_{2/3}_{-x}V_x$)₂ O₇ sample with $0 \le x \le 0.1$. The sintering behavior, phase, and microwave dielectric properties of low-temperature sintered Bi₂($Zn_{1/3}Nb_{2/3}_{-x}V_x$)₂O₇ were examined.

2. Experimental procedure

The powders were prepared by conventional mixed oxide method. Bi₂O₃, ZnO, Nb₂O₅ and V₂O₅ (High Purity Chemical Lab., Japan) powders with 99.9% purity were weighed and mixed for 24 h with stabilized zirconia media and ethanol. The mixed powders were calcined at 800–900 °C for 2 h and then ball milled for 24 h. The milled powders were pressed into disks 8 mm in diameter and 2–4 mm thick under a pressure of 1000 kg/cm². Pellets were sintered at 750–1000 °C for 2 h in air with a heating rate of 5 °C/min. The bulk density of the sintered specimens was determined by the Archimedes method. Shrinkage of the specimens

^{*} Corresponding author. Tel.: +82-2-880-8024; fax: +82-2-886-4156. E-mail address: kshongss@plaza.snu.ac.kr (S.-Y. Cho).

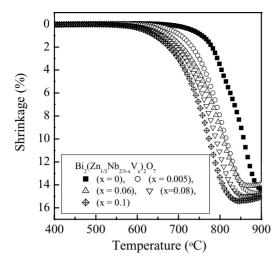


Fig. 1. Shrinkage curves of $Bi_2(Zn_{1/3}Nb_{2/3_{-x}}V_x)_2O_7$ samples as a function of sintering temperature.

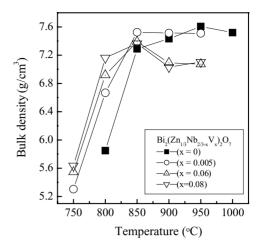
during heating was measured using a horizontal-loading dilatometer with Al₂O₃ rams and boats (Model DII, 420C, Netzsch Instruments, Germany). The formation of second phase was investigated using powder X-ray diffractometer (XRD: Model M18XHF, Mac Science Instruments, Japan). Polished and thermally etched surfaces of sintered specimens were examined using scanning electron microscopy (SEM: Model XL20, Philips, The Netherlands). EDS line scan was used to characterize the diffusion of silver and the interface reactions. The microwave dielectric properties of sintered samples were measured at x-band frequencies (8–10 GHz) using a network analyzer (model HP8720C, Hewlett Packard, Palo Alto, CA). To determine the dielectric properties in the frequency range from 1 kHz to 10 MHz, the capacitance and $\tan \delta$ were measured using an impedance/grain-phase analyzer (Model HP 4194A, Hewlett Packard, USA).

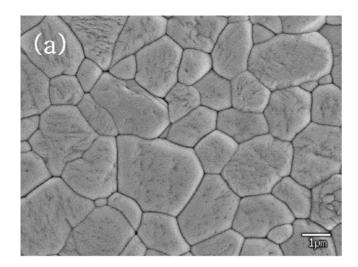
3. Results and discussion

3.1. Sintering behavior of $Bi_2(Zn_{1/3}Nb_{2/3-x}V_x)_2O_7$

Fig. 1 shows shrinkage curves of the green compact of pure $Bi_2(Zn_{1/3}Nb_{2/3})_2O_7$ (BZN) and $Bi_2(Zn_{1/3}Nb_{2/3}_xV_x)_2$ O_7 (BZNV). As can be seen in the figure, a rapid shrinkage occurred near 700 °C in the case of BZNV specimens. The onset of shrinkage occurred at lower temperatures as x increased. Shrinkage was initiated at approximately 800 °C for pure BZN specimen. This demonstrates that V substitution lowered the sintering temperature about 100 °C.

Generally, $\text{Bi}_2(\text{Zn}_{1/3}\text{Nb}_{2/3})_2\text{O}_7$ is known to be sintered above 950 °C [4], but the bulk density of $\text{Bi}_2(\text{Zn}_{1/3}\text{Nb}_{2/3_{-x}}\text{V}_x)_2\text{O}_7$ with x=0.005 sintered at 850 °C for 2 h reaches ~97% of the theoretical density of $\text{Bi}_2(\text{Zn}_{1/3}\text{Nb}_{2/3})_2\text{O}_7$, as shown in Fig. 2. Therefore, these results reveal that sintering of $\text{Bi}_2(\text{Zn}_{1/3}\text{Nb}_{2/3})_2\text{O}_7$ below 900 °C is possible by V_2O_5




Fig. 2. Bulk density of ${\rm Bi_2}({\rm Zn_{1/3}Nb_{2/3}}_x{\rm V}_x)_2{\rm O_7}$ samples as a function of sintering temperature.

substitution, which indicates that cofiring with silver inner electrode can be done.

Fig. 3 shows scanning electron micrographs of BZN sintered at 950 °C and BZNV (x=0.005) sintered at 850 °C for 2 h. The dense microstructure of BZNV (x=0.005) was observed. No second phase or liquid phase was observed, and sintered Bi₂(Zn_{1/3}Nb_{2/3})₂O₇ samples containing V₂O₅ had a smaller grain size (0.4–1 μ m) compared with pure Bi₂(Zn_{1/3}Nb_{2/3})₂O₇ sample sintered at 950 °C for 2 h.

3.2. Phase analysis

Fig. 4 shows the XRD patterns of the specimens of $Bi_2(Zn_{1/3}Nb_{2/3_{-x}}V_x)_2O_7$ (x = 0.0 \sim 0.08) sintered at $850\,^{\circ}\text{C}$ for 2 h. The structure of $\text{Bi}_2(\text{Zn}_{1/3}\text{Nb}_{2/3})_2\text{O}_7$ belongs to a monoclinic zirconolite-like structure [C2/c](No. 15) space group, a = 13.1037(9) Å, b = 7.6735(3) Å, $c = 12.1584(6) \text{ Å}, \beta = 101.318(5)^{\circ}$, reported by Levin et al. [7]. The range of solid-solution formation for $Bi_2(Zn_{1/3}Nb_{2/3}, V_x)_2O_7$ was very narrow ($x \approx 0.005$). Second phase of Bi₄Vi₂O₁₁ and BiNbO₄ were found at the specimens of $Bi_2(Zn_{1/3}Nb_{2/3}V_x)_2O_7$ with $x \ge 0.01$. It is of interest that the splitting of the fundamental reflections near 27, 34, 37, 47, and 49° was abruptly decreased with increasing x (Fig. 5). One of the changes found with increasing x is the formation of Bi-based second phases, which indirectly indicates that the matrix phase of Bi₂($Zn_{1/3}Nb_{2/3}$, V_x)₂O₇ was bismuth deficient state. In order to confirm this hypothesis, Bi-deficient phase of $Bi_{2-\delta}(Zn_{1/3}Nb_{2/3})_2O_{7-(3/2\delta)}$ ($\delta = 0.1$) was prepared and its XRD data is shown in Fig. 5. As can be seen in the figure, Bi_{1.9}(Zn_{1/3}Nb_{2/3})₂O₇ exhibited almost same fundamental reflections with $Bi_2(Zn_{1/3}Nb_{2/3_{-x}}V_x)_2O_7$ (x = 0.08). Therefore, it can be said that Bi₂(Zn_{1/3}Nb_{2/3})₂O₇ exhibit two phases determined by the Bi stoichiometry.

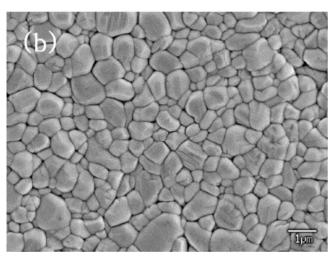


Fig. 3. SEM micrograph of the Bi $_2$ (Zn $_{1/3}$ Nb $_{2/3}$ $_x$ V $_x$) $_2$ O $_7$ specimen with (a) x=0.0 sintered at 950 $^{\circ}$ C for 2 h, (b) x=0.005 sintered at 850 $^{\circ}$ C for 2 h.

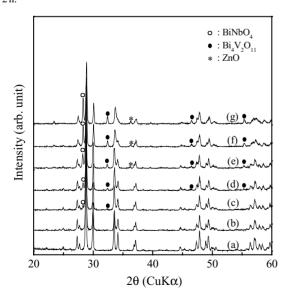


Fig. 4. XRD patterns of $\mathrm{Bi_2(Zn_{1/3}Nb_{2/3_-x}V_x)_2O_7}$ sintered at 850 °C for 2 h: (a) x=0.0, (b) x=0.005, (c) x=0.01, (d) x=0.02, (e) x=0.04, (f) x=0.06, (g) x=0.08.

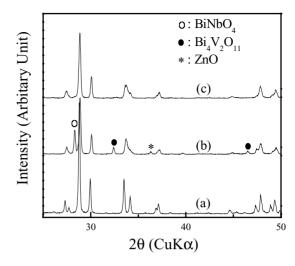


Fig. 5. XRD patterns of $\text{Bi}_2(\text{Zn}_{1/3}\text{Nb}_{2/3_{-x}}\text{V}_x)_2\text{O}_7$ for: (a) x=0.0 sintered at 950 °C for 2 h, (b) x=0.08 sintered at 850 °C for 2 h, (c) $\text{Bi}_{1.9}(\text{Zn}_{1/3}\text{Nb}_{2/3})_2\text{O}_{6.85}$ sintered at 850 °C for 2 h.

3.3. Microwave properties of low-fired $Bi_2(Zn_{1/3}Nb_{2/3-x}V_x)_2O_7$

The dielectric properties of $\text{Bi}_2(\text{Zn}_{1/3}\text{Nb}_{2/3_{-x}}V_x)_2\text{O}_7$ are summarized in Tables 1 and 2. $\text{Bi}_2(\text{Zn}_{1/3}\text{Nb}_{2/3_{-x}}V_x)_2\text{O}_7$ (x=0.001) sintered at 850 °C had a dielectric constant (ε_r) of 78 and a Qxf value of 3800 measured at x-band. By the way, the dielectric loss was increased at x=0.01 and exhibited large increase at the specimens with $x\geq0.02$. Because of large dielectric loss, dielectric properties of the specimens with $x\geq0.02$ were measured at 1 MHz. This increase of dielectric loss was related to the formation of

Table 1 Microwave properties of Bi₂(Zn_{1/3}Nb_{2/3_x}V_x)₂O₇ for $x = 0.0 \sim 0.1$

Samples	Sintering temperature (°C/2 h)	Qxf (GHz)	$\mathcal{E}_{\mathbf{r}}$	Bulk density (g/cm ³)
BZN	950	2981	76.23	7.6059
BZNV (0.001)	850	3799	78.55	7.5479
BZNV (0.003)	850	3486	78.62	7.5371
BZNV (0.005)	850	3143	78.01	7.5238
BZNV (0.01)	850	2200	78.37	7.5121

Table 2 Dielectric properties of Bi₂(Zn_{1/3}Nb_{2/3_x}V_x)₂O₇ for $x=0.02\sim0.08$ and Bi₄V₂O₁₁ at 1 MHz

. 2					
Samples	Sintering temperature (°C/2 h)	tan δ (1 MHz)	\mathcal{E}_{r}	Bulk density (g/cm ³)	
BZNV (0.02)	850	0.00024	72.723	7.5141	
BZNV (0.04)	850	0.00154	72.526	7.3938	
BZNV (0.06)	850	0.00185	72.337	7.3910	
BZNV (0.08)	850	0.00276	67.817	7.3648	
$Bi_4V_2O_{11}\\$	750	0.089	87.329	7.2143	
BZNV (0.06) BZNV (0.08)	850 850	0.00185 0.00276	67.817	7.3910 7.3648	

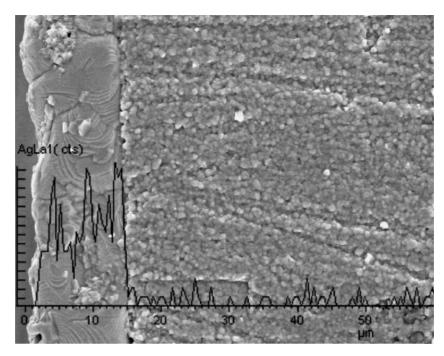


Fig. 6. SEM micrograph and EDS line scan of the interface between a silver electrode and $Bi_2(Zn_{1/3}Nb_{2/3_{-x}}V_x)_2O_7$ (x = 0.005) cofired at 850 °C for 2 h.

second phase $Bi_4V_2O_{11}$ since $Bi_4V_2O_{11}$ ceramic exhibited large dielectric loss; $\tan \delta$ value of ~ 0.089 .

Fig. 6 shows an SEM micrograph and EDS line scan results of the interface between the silver electrode and Bi₂ $(Zn_{1/3}Nb_{2/3_{-x}}V_x)_2O_7$ (x=0.005) cofired at 850 °C for 2 h. The silver profile decreases sharply at the interface, which indicates that the reaction of Bi₂ $(Zn_{1/3}Nb_{2/3_{-x}}V_x)_2O_7$ with silver electrode did not occur.

Consequently, $Bi_2(Zn_{1/3}Nb_{2/3})_2O_7$ with small amount of V_2O_5 substitution can be selected as a suitable candidate for low-temperature cofired ceramics (LTCC) because of its high dielectric constant and compatibility with silver electrode.

4. Conclusions

Influence of V_2O_5 substitution to $Bi_2(Zn_{1/3}Nb_{2/3})_2O_7$ on sintering and dielectric properties were investigated. Substitution of vanadium ion induced two structural changes. One is the formation of Bi-based second phase $Bi_4V_2O_{11}$ and $BiNbO_4$. The other is the change of $Bi_2(Zn_{1/3}Nb_{2/3})_2O_7$ phase from stoichiometric form to Bi-deficient form. The $Bi_2(Zn_{1/3}Nb_{2/3}__xV_x)_2O_7$ (x=0.001) sintered at $850\,^{\circ}$ C for 2h exhibited good microwave dielectric properties:

Qxf = 3800 at 6 GHz, $\varepsilon_r = 78.6$ and this composition showed compatibility with silver inner electrode.

Acknowledgements

This research was supported by a grant from the Center for Advanced Materials Processing (CAMP) of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology, Republic of Korea.

References

- [1] W.C. Tzou, C.F. Yang, Y.C. Chen, P.S. Cheng, J. Eur. Ceram. Soc. 20 (2000) 991.
- [2] S. Ezhilvalavan, J.M. Xue, J. Wang, Mater. Chem. Phys. 75 (2002) 50.
- [3] A. Borisevich, P.K. Davies, J. Eur. Ceram. Soc. 21 (2001) 1719.
- [4] D. Liu, Y. Liu, S.-Q. Huang, X. Yao, J. Am. Ceram. Soc. 76 (1993) 2129.
- [5] D.P. Cann, C.A. Randall, T.R. Shrout, Solid State Commun. 7 (1996) 529–534.
- [6] X. Wang, H. Wang, X. Yao, J. Am. Ceram. Soc. 80 (10) (1997) 2745–2748.
- [7] I. Levin, T.G. Amas, J.C. Nino, T.A. Vanderah, I.M. Reaney, C.A. Randall, M.T. Lanagan, J. Mater. Res. 17 (2002) 1406.