

Ceramics International 31 (2005) 825-829

www.elsevier.com/locate/ceramint

Reaction path in the aluminothermic reduction nitridation reaction to synthesize MgAl₂O₄/TiN composite

Yuanbing Li*, Li Nan, Guozhi Ruan, Xiaohui Li

Hubei Province Key Laboratory of Refractories and Ceramics, Wuhan University of Science and Technology, P.O. Box 183, Wuhan 430081, PR China

Received 28 June 2004; received in revised form 6 July 2004; accepted 15 September 2004 Available online 16 February 2005

Abstract

X-ray diffraction (XRD), differential thermogravimetric analysis (DTA) and differential scanning calorimetric analysis (DSC) were performed on 8Al– TiO_2 –xMgO mixtures and compacted sample treated in nitridation furnace, to foster an understanding of the reaction path involved in the $MgAl_2O_4$ /TiN composite-forming aluminothermic reduction and nitridation. The results show that: (a) when N_2 gas is apt to diffuse in green body, first, aluminum powders react with N_2 to yield AlN, replacement reaction between AlN and TiO_2 occurs, and then TiN and Al_2O_3 are produced; (b) when N_2 gas diffusion is difficult, Ti element formed by Al reduction of TiO_2 reacts with N_2 to form TiN. The results also show that MgO facilitates TiN formation by removal of intermediates.

Keywords: Reaction path; MgAl₂O₄/TiN composite; Aluminothermic reduction

1. Introduction

TiN has a high melting point, high hardness (1800-2100 kg/mm²) and good corrosion resistance to acidic slag and alkaline slag in CO and N2 atmospheres. TiN based composite ceramics, such as Al₂O₃-TiN [1], TiN/Al-O-N [2,3], AlN-TiN [4], Si_3N_4 -TiN [5], TiB_2 -TiN [6], show excellent performances. Study on phase relationship of Ti-Al-O-N showed that the materials in the Ti-Al-O-N system would have good potential for use as high-temperature engineering ceramics [7]. As we all know, MgAl₂O₄, which has a high melting point, good chemical stability, and good resistance to alkaline slag and has better thermal shock resistance than Al₂O₃ and MgO, is a super-quality refractory. The MgAl₂O₄/TiN composites may have good properties and potential application. MgAl₂O₄/TiN composite ceramics were synthesized by aluminothermic reduction and nitridation [8]. But reaction path in the aluminothermic nitridation reduction reaction has not been apparently reported up to now. The present study deals primarily with

reaction path in the synthesis of MgAl₂O₄/TiN composite ceramics from aluminothermic reduction.

2. Experimental procedure

Commercial aluminum powder (Al > 98%, <180 meshes), anatase-form TiO_2 ($TiO_2 > 98.5\%$,) and MgO (chemical purity), were used for the preparation of MgAl₂O₄/TiN composite.

8Al–TiO₂–*x*MgO mixtures of were weighed according to the stoichiometry of reactants in Eq. (1), and then thoroughly dry-mixed in ball mill to ensure homogeneity. The mixtures were die-pressed at pressure of 200 MPa to form cylindrical green compacts 20 mm in diameter and 20 mm in thickness. The green compacts were treated in a nitridation furnace at 1000 °C for 3 h.

$$8Al + 6TiO2 + xMgO + 3N2$$

= xMgO \cdot Al₂O₃ + 6TiN + (4 - x)Al₂O₃ (1)

The phases present in its composites were investigated by XRD with X'PERT MPD PRO attached by X'celerator (Philips) using Ni-filtered, Cu K α under the following

^{*} Corresponding author. Tel.: +86 27 68862511; fax: +86 27 68862121. E-mail address: lybref2002@hotmail.com (Y. Li).

condition: scanning speed of 2° /min, temperature of 16° C. DTG and DSC were also carried out on mixture $8Al-6TiO_2-xMgO$ mixtures at heating rate of 10° C/min in N_2 atmosphere (TG-DSC from NETZSCH STA 409C, German and LABSYS TG-DSC1600 from France). Phase analysis of the $8Al-TiO_2-xMgO$ mixture after DTG and DSC at given temperature was examined by XRD.

3. Results and discussion

DTG and DSC measurements were performed up to 1500 °C. The DTG and DSC results for the 8Al–TiO₂–xMgO mixtures are shown in Fig. 1. Each DSC curve of the 8Al–TiO₂–xMgO mixture (x > 0) shows two endothermic peaks at ~370 and ~657 °C, respectively. But DSC curve of the 8Al–TiO₂ mixture exhibits no endothermic peak at ~370 °C,

weight gain or loss at the same temperature is little. The peak at \sim 370 °C may be attributed to decomposition of a small amount of Mg(OH)₂ presented in MgO powders and the peak at about 657 °C is due to the melting of aluminum. Below 1000 °C or so, no high peaks can be observed in DTG curve, which indicates that no weight gain occurred and no/or little N₂ gas reacts with aluminum, and titanium formation by reduction of TiO₂. Aluminothermic reduction and nitridation reaction can be responsible for the high and sharp DTG and DSC peaks at ~ 1000 and 1400 °C, except for those endothermic peaks at \sim 370 and \sim 657 °C, the slow DSC releasing heat and weight gain of DTG curves in the temperature range of 200-1000 °C indicate that aluminothermic reduction and nitridation did not happen in a magnificent manner. Up to about 1000 °C, the rapid DSC releasing heat and high weight gain of DTG curves prove that aluminothermic reaction and nitridation begin to happen quickly.

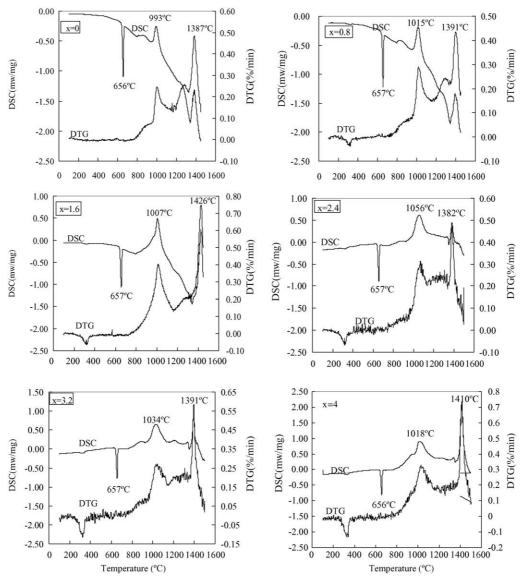


Fig. 1. DSC and DTG patterns of mixture 8Al-6TiO2-xMgO with different MgO content, where x is 0; 0.8; 1.6; 2.4; 3.2; 4.0, respectively.

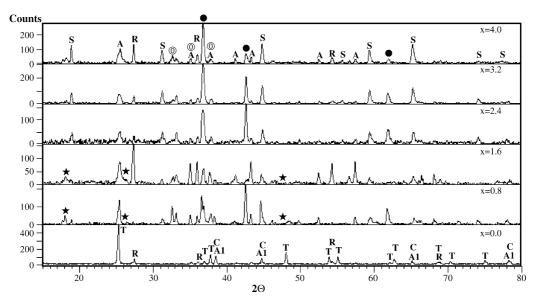


Fig. 2. XRD patterns of 8Al-6TiO₂-xMgO mixtures with different MgO/Al after DTG and DSC. A: α -Al₂O₃, S: MgAl₂O₄, \otimes : H-AlN, \bullet : TiN, T: Ti_{0.72}O₂, C: C-AlN, Al: alumimun, \bigstar : Ti₃O₅.

XRD results for the 8Al–TiO₂–xMgO mixtures after DSC and DTG at 1500 °C are shown in Fig. 2. Ti_{0.72}O₂ (anataseform), cubic AlN (C-AlN) or remnant Al and rutile can be observed in XRD pattern for the 8Al–TiO₂ mixtures, but α-Al₂O₃ and TiN cannot be detected, because the diffraction peaks of C-AlN and aluminum are too similar to be distinguished from each other, C-AlN and remnant Al can not be identified in XRD pattern. When x = 0.8 or 1.6, α-Al₂O₃, TiN, MgAl₂O₄ and a small amount of hexagonal AlN (H-AlN) and Ti₃O₅ were found in XRD pattern. When x = 2.4–4.0, MgAl₂O₄, TiN, α-Al₂O₃, rutile and a little H-AlN are identified (shown in Fig. 2). The presence of α-

 Al_2O_3 , TiN and $MgAl_2O_4$ reveals that aluminothermic reduction and nitridation reaction occur, this also indicates that MgO can improve aluminothermic reduction and nitridation reaction.

In order to investigate reaction path further, XRD analysis was performed on the 8Al-6TiO₂-2.4MgO mixtures after DTG and DSC at 1056 and 1382 °C (weight gain and exothermic peak at DTG and DSC curve) (shown in Fig. 3). At 1056 °C, anatase, rutile, MgTi₂O₅, MgO, MgTiO₃ and C-AlN and/or aluminum were found in XRD pattern, weight gain peaks on DTG curve indicate that nitridation reaction has happened, nitridation reaction products should be TiN,

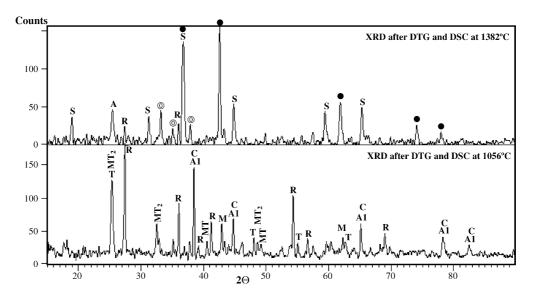
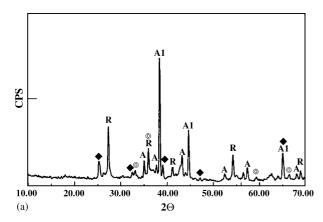



Fig. 3. XRD patterns of 8Al-6TiO₂–2.4MgO mixtures after DSC and DTG at 1382 and 1056 $^{\circ}$ C, respectively. A: α -Al₂O₃, S: MgAl₂O₄, o: H-AlN, \bullet : TiN, MT₂: MgTi₂O₅, R: rutile, T: anatase, Al: aluminium, MT: MgTiO₃, C: C-AlN.

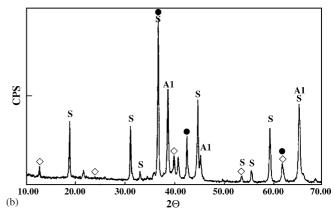


Fig. 4. XRD patterns of compacted sample treated in nitrogen at $1000\,^{\circ}\text{C}$ for 3 h. (a) Compacted sample from 8Al-6TiO₂ mixtures; (b) compacted sample from 8Al-6TiO₂-4MgO mixtures. Al: aluminum, R: rutile, S: MgAl₂O₄, •: TiN, A: α -Al₂O₃, @: H-AlN, •: Al₃Ti, \diamond : Ti₂AlN.

AlN or Mg_3N_2 , but TiN and Mg_3N_2 were not detected by XRD, so we conclude that C-AlN forms in nitridation reaction process. At this temperature, main possible reaction is written as follows:

$$2Al_{(1)} + N_{2(g)} = 2AlN_{(s)}$$
 (2)

At 1382 °C, TiN, MgAl₂O₄, α-Al₂O₃, rutile and H-AlN were identified by XRD (shown in Fig. 3). Nitridation reactions determined by weight gain peaks at this temperature are listed below:

$$2Ti_{(s)} + N_{2(g)} = 2TiN_{(s)}$$
(3)

$$4AlN_{(s)} + 4TiO_{2(s)} = 4TiN_{(s)} + 2Al_2O_{3(s)} + O_{2(g)}$$
 (4)

$$4AlN_{(s)} + 3TiO_{2(s)} = 3TiN_{(s)} + 2Al_2O_{3(s)} + 1/2N_{2(g)}$$
(5)

TiN are possible to be produced by two main reactions, one reaction is that element Ti reduced by Al from TiO_2 reacts with nitrogen to produce TiN (shown in Eq. (3)); the other reaction is replacement reaction between AlN and TiO_2 (shown in Eqs. (4) and (5)), this is consistent with the former researches [9].

Compared with phase analysis of the 8Al–6TiO₂–xMgO mixtures, XRD were performed on compacted sample obtained from 8Al–6TiO₂ and 8Al–6TiO₂–4MgO mixtures respectively (shown in Fig. 4a and b). Al, H-AlN, rutile, corundum and Al₃Ti alloy were found in XRD pattern of sample obtained from the 8Al–6TiO₂ mixtures at 1000 °C for 3 h in N₂ gas (shown in Fig. 4a). Al₃Ti alloy was formed between Al and Ti element formed by Al reduction of TiO₂. The occurrence of Al and Al₃Ti residue in the presence of N₂ gas at 1000 °C indicates that nitridation reaction was carried out incompletely due to inadequate N₂ gas diffusion in the compacted sample, in comparison with N₂ gas diffusion in the mixtures.

As for compacted 8Al-6TiO₂-4MgO samples, MgAl₂O₄, TiN, Al and Ti₂AlN were detected by XRD, as shown in Fig. 4b. The XRD result also shows that MgO can improve aluminothermic reduction nitridation reaction and accel-

erate formation of TiN. The overall reaction process can be divided into two stages: the first stage is formation of intermediate species, such as AlN, Ti₂AlN, Al_xTi_y alloy; AlN is formed in the presence of enough N₂ gas, Al_xTi_y alloy or Ti₂AlN was produced under inadequate N₂ condition. The second stage is formation of TiN, TiN can be obtained from replacement reaction between AlN and TiO₂ or from direct nitridation of Ti element

4. Conclusions

The investigation has shown that: (a) when N_2 gas can diffuse easily in green body, first, aluminum powders react with N_2 to yield AlN, replacement reaction between AlN and TiO_2 occurs, and then TiN and Al_2O_3 are produced; (b) when N_2 gas diffusion is difficult, Ti element formed by Al reduction of TiO_2 reacts with N_2 to form TiN. Addition of MgO facilitates TiN formation by removal of intermediate species.

Acknowledgements

This work was supported by Wuhan Young Chenguang Project (grant no. (20025001011), the authors gratefully thank Cheng Xiaoxia from Hubei Province Key Lab of Refractories and Ceramics for her help in the SEM.

References

- T. Qiu, A. Mocellin, Microstructure and creep mechanism of Al₂O₃— TiN composites, J. Nanjing Univ. Chem. Technol. 21 (2) (1999) 21–23 (in Chinese).
- [2] J.P. Bennett, J.L. Hoyer, J.A. Clark, Characterization of TiN/Al–O–N composites, Ceram. Eng. Sci. Proc. 14 (1993) 1165–1172.
- [3] J.L. Hoyer, J.A. Clark, Characterization of electro conductive TiN/Al– O–N composites, Ceram. Trans. 41 (1994) 279–286.

- [4] S.S. Ordan'Yan, S.O. Krylov, E.K. Stepanenko, U.A. Tsielin, Some special features of structure formation in sintering ultradisperse powders of TiN-AlN compositions, Refractories 36 (1/2) (1995) 14–16.
- [5] C.C. Liu, J.L. Huang, Micro-electrode discharge machining of TiN/ ${\rm Si_3N_4}$ composites, Br. Ceram. Trans. 99 (4) (2000) 149–152.
- [6] R. Tomoshige, A. Murayama, T. Matsushita, Production of TiB₂-TiN composites by combustion synthesis and their properties, J. Am. Ceram. Soc. 80 (1997) 761–764.
- [7] D.S. Perera, Phase relationships in the Ti–Al–O–N system, Br. Ceram. Trans. 89 (2) (1990) 57–60.
- [8] Li Yuanbing, Li Nan, G. Ruan, Production of MgAl₂O₄/TiN composite by aluminothermic reduction and nitridation, Mater. Sci. Technol. 19 (7) (2003) 991–993.
- [9] T. Sperisen, A. Mocellin, Investigation of the displacement reaction in mixed AlN + TiO₂ powders, J. Mater. Sci. 27 (4) (1992) 1121– 1135