

Ceramics International 32 (2006) 947–949



www.elsevier.com/locate/ceramint

# Short communication

# A crystal structure consideration of an orthorhombic BaEu<sub>2</sub>Mn<sub>2</sub>O<sub>7</sub> phase

Shunkichi Ueno\*, Akira Shimono<sup>1</sup>, Naoki Kamegashira

Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan

Received 12 March 2005; received in revised form 13 April 2005; accepted 11 July 2005 Available online 5 October 2005

# Abstract

The electron microscopic study was performed on an orthorhombic  $BaEu_2Mn_2O_7$  phase. The electron diffraction patterns of this phase showed some series of superlattice spots such as  $h \ 0 \ 0 \ (h = \text{odd})$ ,  $h \ k \ 0 \ (h, k = \text{odd})$  and  $h \ 0 \ (h, l = \text{odd})$  that were forbidden for face centered cell. A possible space group  $P112_1/m \ (11)$  was derived from the reflection conditions. And then, a superstructure of this phase was discussed in this paper.

© 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: B. Defects; D. Perovskite; Ceramics; Crystal structure; Microstructure

#### 1. Introduction

BaEu<sub>2</sub>Mn<sub>2</sub>O<sub>7</sub> phase possesses Sr<sub>3</sub>Ti<sub>2</sub>O<sub>7</sub> type structure which belongs to Ruddlesden–Popper homologous series [1,2]. It is known that this phase shows two different types of orthorhombic structures. One type of the orthorhombic structure has the lattice parameters a and  $b \approx a_t$  and  $c \approx c_t$  where  $a_t$  and  $c_t$  denote the lattice parameters of fundamental tetragonal cell. And another type has the lattice parameters a and  $b \approx \sqrt{2}a_t$  and  $c \approx c_t$ . The latter orthorhombic phase can be easily obtained by the sintering in argon atmosphere [2].

In the stoichiometric composition of  $BaEu_2Mn_2O_7$ , manganese ion has trivalent state. Because trivalent manganese ion is a Jahn–Teller ion, the oxygen octahedra in the stoichiometric  $BaEu_2Mn_2O_7$  phase elongated along c axis as our previous report [2]. Where, it was considered that a high spin state electron occupied  $d_z$ 2 orbital. The powder X-ray diffraction pattern of this phase satisfied *Fmmm* (69) symmetry without superlattice reflections.

In this study, the crystal structure of an orthorhombic BaEu<sub>2</sub>Mn<sub>2</sub>O<sub>7</sub> phase was studied by electron diffraction method and a new superstructure model was proposed.

# 2. Experimental procedures

Crystalline  $BaEu_2Mn_2O_7$  was prepared by solid-state reaction. High purity  $BaCO_3$ ,  $Eu_2O_3$  and  $Mn_2O_3$  powders (all 99.99% purity) were used as the starting materials. A stoichiometric composition of these powders ( $BaCO_3:Eu_2O_3:Mn_2O_3=1:1:1$ ) were mixed in agate mortar and then, pressed into pellets. The pellets were heated at  $1350\,^{\circ}C$  for 3 days in Ar atmosphere. The phase identification was performed by powder X-ray diffraction method. The orthorhombic phase was successfully prepared. For electron diffraction data collection, the sintered pellet was crushed and mounted on micro grid mesh.

# 3. Results and discussion

This phase possessed  $Sr_3Ti_2O_7$  type structure [1] and the powder X-ray diffraction pattern of this phase shows *Fmmm* (69) symmetry as our previous report [2]. No forbidden

<sup>\*</sup> Corresponding author. Present address: The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.

E-mail address: ueno23@sanken.osaka-u.ac.jp (S. Ueno).

Department of Chemistry and Biochemistry, Suzuka National College of Technology, Shiroko-cho, Suzuka 510-0294, Japan.

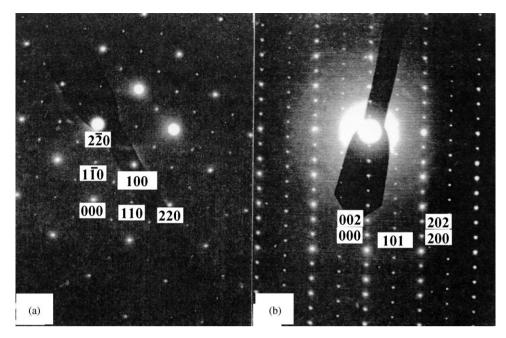



Fig. 1. The electron diffraction patterns of  $BaEu_2Mn_2O_7$  phase from  $[0\ 0\ 1]_o$  and  $[1\ 0\ 0]_o$  zones.

peaks of *Fmmm* symmetry can be observed in the powder X-ray diffraction pattern. The lattice parameters of this orthorhombic phase were  $a_{\rm o} \approx \sqrt{2}a_{\rm t}$ ,  $b_{\rm o} \approx \sqrt{2}a_{\rm t}$  and  $c_{\rm o} \approx c_{\rm t}$ , where  $a_{\rm o}$ ,  $b_{\rm o}$  and  $c_{\rm o}$  denote orthorhombic cell and  $a_{\rm t}$  and  $c_{\rm t}$  denote fundamental tetragonal cell.

Fig. 1(a) and (b) show the electron diffraction patterns of this phase. The zone axis of Fig. 1 (a) is  $[0\ 0\ 1]_o$ . Where two different types of superlattice spots series can be clearly observed. The super lattice spots of  $h\ k\ l\ (h+k=\text{odd}$  and

l= even) such as 1 0 0 can be observed between fundamental spots of h k l (all even). In addition to this type superlattice spots, h k l (h and h = odd and h = even) type superlattice spots such as 1 1 0 can be also observed in Fig. 1(a). On the other hand, [1 0 0]<sub>o</sub> zone pattern also shows a series of superlattice spots, where the super lattice of hkl (h+k = odd and h = even) type can be observed. These superlattice spots are weak, however, that can be clearly seen in the electron diffraction patterns. These reflections are

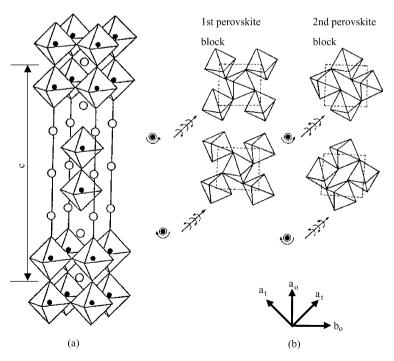



Fig. 2. The fundamental crystal structure of  $Sr_3Ti_2O_7$  and a possible superstructural model for an orthorhombic  $BaEu_2Mn_2O_7$  phase.

forbidden for *Fmmm* symmetry. Hence, a possible space group is needed for the consideration of the new super-structure.

From these diffraction patterns, the general rule of reflection conditions for this orthorhombic BaEu<sub>2</sub>Mn<sub>2</sub>O<sub>7</sub> phase can be derived as  $0\ 0\ l$ ; l = even. From this extinction rule, a monoclinic symmetry space group  $P112_1/m$  (11) can be derived as one possible space group.

Aleksandrov and Bartolome summarized the possible superstructures for Sr<sub>3</sub>Ti<sub>2</sub>O<sub>7</sub> type structure derived using tilted oxygen octahedron model [3]. According to their superstructural model, a tilted oxygen octahedron model can be assumed as a superstructure for orthorhombic BaEu<sub>2</sub>Mn<sub>2</sub>O<sub>7</sub> phase. The fundamental structure of Sr<sub>3</sub>Ti<sub>2</sub>O<sub>7</sub> and the superstructural model of this case are drawn in Fig. 2(a) and (b). In the superstructural model,  $a_t$  and  $c_t$  axis are the axes of rotations of oxygen octahedron. Each oxygen octahedron in this model tilted around  $a_t$  axis alternatively. Sr<sub>3</sub>Ti<sub>2</sub>O<sub>7</sub> type structure possess perovskite block where two block of oxygen octahedron linked along c axis. The oxygen octahedron tilted around  $a_t$  axis alternatively along c axis as shown in Fig. 2(b). On the other hand,  $c_t$  axis is also the axis of rotation. The tilting manner is also alternatively along  $a_t$ and  $c_t$  axes as shown in the figure.

The ionic state of manganese in  $BaEu_2Mn_2O_7$  phase is +3 valence in the stoichiometric composition.  $Mn^{3+}$  ion possess a high spin state electron at  $e_g$  term, thus, this phase may be distorted by Jahn–Teller effect as reported previously [2,4], even if this phase does not possess the tilted oxygen octahedron mode. Thus it is considered that the orthor-

hombic BaEu<sub>2</sub>Mn<sub>2</sub>O<sub>7</sub> phase possess a distortion by Jahn–Teller effect due to trivalent manganese ion and oxygen octahedron tilting along  $a_t$  and  $c_t$  axis.

# 4. Conclusion

The orthorhombic  $BaEu_2Mn_2O_7$  phase possesses a superstructure corresponding to the superlattice reflections. A possible space group of this phase and a possible superstructure model for this phase were proposed. The oxygen octahedron in this phase tilted around  $a_t$  and  $c_t$  axis.

# Acknowledgement

This work was supported by the Grant-in-Aid for Scientific Research (B) (No. 13450259) by the Japan Society for the Promotion of Science.

#### References

- [1] M.N. Deschizeaux Cheruy, J.C. Joubert, J. Solid State Chem. 40 (1981) 14–19
- [2] S. Ueno, J. Meng, N. Kamegashira, H. Saito-Nakano, K. Enami, Mater. Res. Bull. 31 (1996) 497–502.
- [3] K.S. Aleksandrov, J. Bartolome, J. Phys.: Condens. Matter. 6 (1994) 8219.
- [4] S. Ueno, N. Kamegashira, Powder Diffract. 12 (1997) 103-105.