

Ceramics International 33 (2007) 355-359

www.elsevier.com/locate/ceramint

Improving the microstructure of Si₃N₄-TiN composites using various PEIs to disperse raw TiO₂ powder

Shan Zheng ^a, Lian Gao ^{a,*}, Hiroshi Watanabe ^b, Junichi Tatami ^b, Toru Wakihara ^b, Katsutoshi Komeya ^b, Takeshi Meguro ^b

 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
 Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogayaku, Yokohama 240-8501, Japan

Received 3 August 2005; received in revised form 2 September 2005; accepted 3 October 2005 Available online 6 January 2006

Abstract

An in situ synthesis route was developed for the preparation of dense and homogenous Si_3N_4 —TiN (5 vol% TiN) composites, with TiN grains formed from TiO_2 and AlN. The dispersion of TiN grains in the Si_3N_4 matrix using various polyethyleneimines (PEIs) as dispersing agents for raw TiO_2 powder was investigated by scanning electron microscopy (SEM). We found that the microstructure of Si_3N_4 —TiN composites was improved with the aid of PEI to disperse TiO_2 particles in the mixture. It was critical to disperse original TiO_2 particles with the appropriate dispersant before the sintering process, because the size of TiN grains in the Si_3N_4 —TiN composites was strongly dependent on the size of TiO_2 particles. PEI molecules modified the surface of TiO_2 particles and protected the TiO_2 particles in the slurry from aggregations. It was a practical and useful way to obtain the Si_3N_4 —TiN composites with homogeneous microstructures without the alteration of the preparation procedure.

© 2005 Published by Elsevier Ltd and Techna Group S.r.l.

Keywords: A. Sintering; B. Composite; B. Microstructure-final; D. Si₃N₄; D. TiO₂

1. Introduction

Silicon nitride (Si_3N_4) ceramics are known for their high heat resistance, hardness, refractoriness, durability, thermal shock resistance, and chemical resistance, which has a high potential in the practical utilization not only as a structural material but also as a functional material [1]. However, they are brittle and have low fracture toughness, which hinders their broad application. Titanium nitride (TiN) exhibits a number of desirable properties, including high hardness, good chemical durability, high electrical conductivity, and good wear-resistance [2], and is a popular second phase additive when sintered in nitrogen to improve the fracture toughness of Si_3N_4 due to its good compatibility with Si_3N_4 [3–5]. Si_3N_4 –TiN composites have been investigated extensively [6–8]. An interesting method to obtain these TiN particles is in situ synthesis, which enables the production of composites at low

cost, with desirable microstructures and enhanced sinterability [9,10].

In general, most of the ceramic composites containing a dispersed second phase result from a direct addition of the second phase. Such materials can sometimes exhibit poor characteristics, which result from an inadequate dispersion process and the lack of sinterability caused by the large volume fraction of inert dispersion required for conductivity [5]. The addition of dispersants is reported to result in better dispersion and improved electrical and mechanical properties [11]. For the in situ synthesis of Si₃N₄-TiN composites, the TiN grain size in the composite seems to be related to the initial TiO₂ particle size [10]. Thus, it is important to reduce the aggregations of TiO₂ particles in the mixed slurry before the sintering process. Some researchers have discussed the electrostatic repulsion force for the dispersion of TiO₂ and Al₂O₃ particles in the suspensions with alkyl amines in various organic solvents [12,13]. Kakui et al. have reported that the steric repulsion between particles promotes a dominant dipersability and stability in non-aqueous suspension using polymer as the dispersant. In a non-aqueous solvent, an efficient dispersant

^{*} Corresponding author. Tel.: +86 21 52412718; fax: +86 21 52413122. *E-mail address*: liangaoc@online.sh.cn (L. Gao).

often consists of the functional groups for the adsorption on a particle and the steric repulsive chain, which is long enough to overcome van der Waals attractive forces [14]. Thus, using appropriate molecular structure of the polymer dispersant and its additive conditions to obtain a high dispersion were determined in many systems [15–17].

In the previous work, Si_3N_4 –TiN composites were prepared by in situ synthesis method. It was found that the secondary phase TiN grains, which formed from TiO_2 and AlN, distributed in grain-boundary phase throughout the sintered body. Furthermore, the smaller TiN grains in the composite are, the better the wear-resistance is [18,19]. The present work was focused on the investigation of the improvement of the microstructure of Si_3N_4 –TiN composites in the presence of PEI dispersant with different molecular weight. PEI molecules coated on the surface of TiO_2 particles and protected the TiO_2 particles in the slurry from aggregations. It would be a practical and useful way to improve the dispersion of TiN grains in the Si_3N_4 matrix in Si_3N_4 –TiN composites.

2. Experimental procedure

2.1. Preparation of TiO₂ suspension

Polyethyleneimines (PEI, Nippon Syokubai Co., Ltd.) were used in this study as polymer dispersants with multi-amine functional groups to disperse ${\rm TiO_2}$ (P-25, Degussa, BET surface areas: $46~{\rm m^2/g}$, average particles size is 200 nm) in advance. PEIs with molecular weights of 300, 1200 and 10,000 were used in the system. $5.0~{\rm g}~{\rm TiO_2}$ powder was mixed in ethanol containing $0.10~{\rm g}$ (or $0.15~{\rm g}$, or $0.20~{\rm g}$) of PEIs with different Mw and then ball-milled for $24~{\rm h}$.

2.2. Preparation of Si₃N₄-TiN sintered bodies

 Si_3N_4 (SN-E-10, Ube Industries, Ltd.), Y_2O_3 (RU-P, Shinetsu Chemical Co.), Al_2O_3 (AKP-30, Sumitomo Chemical Co., Ltd.), AlN (F-Grade, Tokuyama Corp.) was added in the TiO_2 dispersion. In the mixed slurry, Si_3N_4 , Y_2O_3 , Al_2O_3 , TiO_2 and AlN powders were weighed at 92:5:3:5:5 (wt%) ratio. The mixture was mixed by ball-milling for another 96 h to get the homogenous dense slurry. After drying and addition of binder, it was molded into Ø 15×7 mm by uniaxial pressing and cold isostatic pressing. The green bodies were dewaxed at the temperature of $500\,^{\circ}$ C in air to remove the organic compounds and PEI dispersant, and then they were subjected to 0.9 MPa at $1800\,^{\circ}$ C for 2 h in nitrogen atmosphere.

2.3. Characterization of sintered bodies

The densities of the sintered samples were measured according to Archimedes principle. XRD was used to examine the phase composition of Si_3N_4 –TiN composite (Rigaku D/MAX rB). The distribution of TiN grains in the Si_3N_4 –TiN composite was identified by back-scattered SEM observation (JEOL JXA 8100).

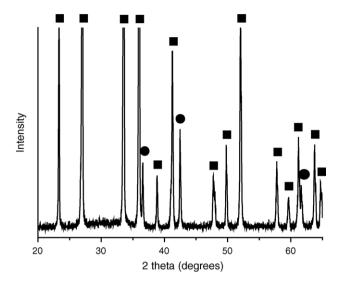


Fig. 1. XRD of Si₃N₄-TiN composite.

3. Results and discussion

In the Si_3N_4 –TiN composites, Ueno et al. surveyed the "in situ" formation of TiN grains in Si_3N_4 matrix from the powder mixture of TiO_2 and AlN [20]. They confirmed that the formation reaction of TiN through the reaction (1) occurred from 1150 to 1450 °C, before the Si_3N_4 matrix sintering. AlN was intended to act as a nitrogen supplier and an oxygen acceptor. Al_2O_3 was one of reaction products, and became one of the sintering agents. It was assumed that the released oxygen to be captured by surrounding carbon mold or Si_3N_4 matrix to form CO or SiO_2 .

$$2\text{TiO}_2(s) + 2\text{AlN}(s) = 2\text{TiN}(s) + \text{Al}_2\text{O}_3 + \frac{1}{2}\text{O}_2(g)$$
 (1)

Fig. 1 showed the X-ray diffraction patterns of Si_3N_4 –TiN composite. The distinct peaks assigned to cubic TiN (\bullet) and β -Si₃N₄ (\blacksquare) could be detected and no peaks of other substance appeared. This indicated that raw TiO₂ particles were completely converted to TiN grains in the sintering procedure.

For the in situ nitridation of TiO₂ to TiN, the size and morphology of TiN grains were significantly influenced by those of original TiO₂ particles [18]. Thus, the size and morphology of TiN grains in Si₃N₄-TiN composite were closely related to those of original TiO₂ particles in the mixed powder before the sintering. On the other hand, mechanical properties of Si₃N₄-TiN composites are strongly dependent on its microstructure. It is important to prepare well-dispersed powder mixtures in the Si₃N₄-TiO₂-AlN-Al₂O₃-Y₂O₃ system, which upon densification would yield dense compacts with homogeneous microstructure. To select the optimum polymer dispersant, the combination between the surface characteristics of the powder materials and organic solvent needs to be

$$-$$
 CH2 $-$ CH2 $-$ NH $\frac{1}{2}$

Fig. 2. The molecular structure of polyethyleneimines (PEI).

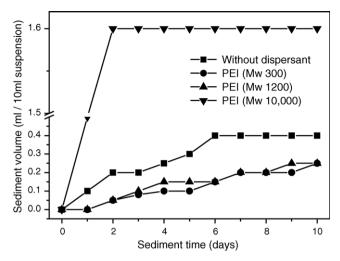


Fig. 3. Sediment of ${\rm TiO_2}$ suspensions with 0.15 g PEIs, which ball-milled for 24 h.

considered [14]. Polyethyleneimines (PEIs) with multi-amine functional groups were used as dispersant for TiO_2 powder (P-25) in the Si_3N_4 – TiO_2 –AlN– Al_2O_3 – Y_2O_3 system according to ref. [14]. Fig. 2 illustrated the scheme of molecular structure of PEIs.

Usually the stability of ceramic suspension is determined by measuring the sediment volume versus the sediment time. During the ball-milling process, the "larger" TiO₂ agglomerates fractured into the "smaller" particles. The PEI molecules are coated on the surface of the "smaller" TiO₂ particles, and the steric repulsive chain is long enough to overcome van der

Table 1
Density of the sintered Si₃N₄-TiN composites

Code of samples	PEI's Mw	Dispersion TiO ₂ in advanced (h)	Amount of PEI	Density (%)
0		0	0	98.0
P1-1	1200	24	0.10	98.0
P1-2		24	0.15	97.9
P1-3		24	0.20	98.1
P2-2	10000	24	0.15	98.3
P3-1	300	24	0.10	98.2
P3-2		24	0.15	98.2
P3-3		24	0.20	98.1

Waals attractive forces and prevent them from aggregating again. PEI modified TiO₂ particles repulsed each other in the suspension. From the results of Fig. 3, the particles modified by PEI with Mw 300 or PEI with Mw 1200 were more stable in the suspension. However, the particles modified with PEI with Mw 10,000 precipitated so fast, which maybe caused by the bridging effect between high molecular weight polymers adsorbed TiO₂ particles.

The influences of PEI molecular weight and PEI/ TiO_2 weight ratio on the relative density of the sintered Si_3N_4 –TiN composites with the amount of PEI of TiO_2 in the suspension were summarized in Table 1. As can be seen from Table 1 all composites were close to the theoretical density after sintering.

The back-scattered SEM micrographs of the polished surface of Si₃N₄-TiN composites were presented in Figs. 4–6. Bright TiN grains were homogenously distributed in a darker matrix Si₃N₄, all TiN grains were of a submicron average size.

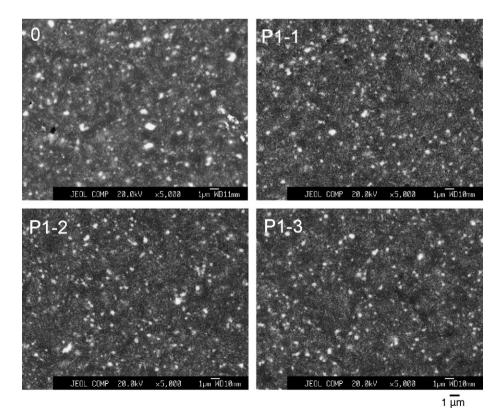


Fig. 4. Back-scattered SEM micrographs of sintered Si₃N₄-TiN composites (0, P1-1, P1-2, P1-3).

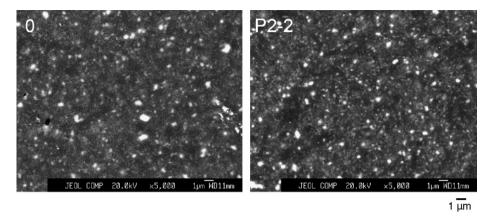


Fig. 5. Back-scattered SEM micrographs of sintered Si₃N₄-TiN composites (0, P2-2).

As shown in detail in previous work, it was found that TiN particles with spherical shape existed at the grain boundary of the sintered body, which seemed to be formed from raw TiO₂ [16]. For in situ synthesis of Si₃N₄–TiN composite, microstructural observations indicated that submicron-size TiO₂ particles yielded TiN with almost the same size [20]. It could also be seen in Figs. 4–6, that, PEI dispersant of TiO₂ (P-25), incorporated in the starting mixture powder, played an important role in the microstructure development. The particle size of original TiO₂ (P-25) was about 200 nm, while it was difficult to break the aggregations of P-25 because of the restricted ball-mill conditions. Clearly, the absence of further aggregations of TiO₂ particles was related to the steric

repulsion between TiO₂ particles with adsorbed PEI layers in the suspension. However, with no addition of PEI, the size of TiN grain in the composite 0 was significantly larger than in the other composites grades.

Microstructures of composites (Fig. 4) were very much dependent on the added amount of PEI with Mw 1200 in ${\rm TiO_2}$ suspension. As the contents of PEI with Mw 1200 increased in the mixture, it was expected that the microstructure be promoted due to the homogeneous distribution of TiN grains. TiN agglomerate, whose size was about 0.5 μ m, could be detected in the microstructure of P1-1. However, their number decreased with increasing amount of PEI with Mw 1200 and at 0.20 g PEI with Mw 1200 addition the microstructure was

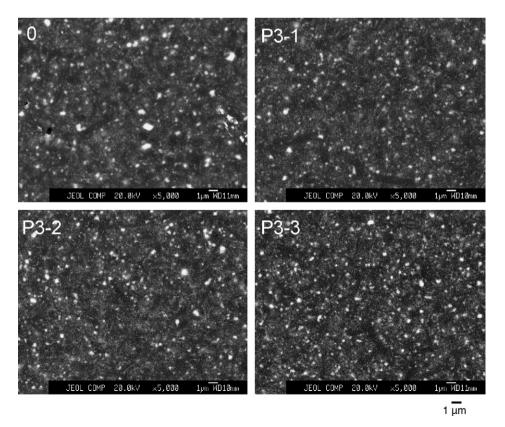


Fig. 6. Back-scattered SEM micrographs of sintered Si₃N₄-TiN composites (0, P3-1, P3-2, P3-3).

homogeneous with almost no agglomerates (P1-3 in Fig. 4), in which the average grain size of TiN was from 0.2 to 0.3 μm.

Although PEI with Mw 10,000 is too large to stabilize TiO_2 particles in the suspension, it could protect TiO_2 from aggregation in the slurry. As can be seen in Fig. 6, with the addition of 0.15 g PEI with Mw 10,000, the resulting microstructure of composite P2-2 improved compared to the composite 0. It was found that TiN grains with size ranging from 0.2 to 0.5 μ m distributed throughout the sintered body.

Accordingly, homogeneous and agglomerate-free microstructures of $\mathrm{Si_3N_4}$ –TiN composites were obtained with the aid of PEI with Mw 300 (Fig. 5). The amount of PEI with Mw 300 was found to be less critical for microstructure homogeneity of $\mathrm{Si_3N_4}$ –TiN composites (P3-1, P3-2 and P3-3). Large TiN agglomerates disappeared compared to composite 0, TiN grains with 0.2–0.3 μ m in diameter distributed throughout $\mathrm{Si_3N_4}$ matrix.

Based on these results, it was expected that using PEI with Mw 300 to disperse original TiO_2 particles would result in a homogeneous microstructure with smaller TiN grains in Si_3N_4 –TiN composites.

4. Summary

This study has developed a practical route suitable for the preparation of Si_3N_4 –TiN composites with homogenous microstructures. Appropriate PEI dispersing raw TiO_2 powder would control the microstructure of Si_3N_4 –TiN composites. In all cases, it was possible to obtain well-dispersed secondary TiN phase in the Si_3N_4 matrix phase in the presence of PEIs with different molecular weights and added amount of PEI. It is believed that the uniform distribution of TiN grains with 0.2–0.3 μ m in diameter contributes to the improvement of the wear-resistance of Si_3N_4 ceramics.

Acknowledgements

The authors thank the National Nature Science Foundation of China (No. 50272076, No. 50402006), Shanghai Nanotechnology Promotion Center (No. 0452nm086) and Shanghai Rising-Star Project (No. 03QF14058) for support.

References

J. Han, G. Chen, S. Du, J.V. Wood, Synthesis of Si₃N₄-TiN-SiC composites by combustion reaction under high nitrogen pressures, J. Eur. Ceram. Soc. 20 (7) (2000) 927–932.

- [2] L.E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York, London, 1971.
- [3] C. Olagnon, E. Bullock, G. Fantozzi, Processing of high density sintered SiC whisker reinforced Si₃N₄ composites, Ceram. Int. 17 (1) (1991) 53– 60
- [4] F. Sigulinski, S. Bošković, Phase composition and fracture toughness of Si₃N₄-ZrO₂ with CeO₂ additions, Ceram. Int. 25 (1) (1999) 41–47.
- [5] L. Gao, J. Li, T. Kusunose, K. Niihara, Preparation and properties of TiN-Si₃N₄ composites, J. Eur. Ceram. Soc. 24 (2) (2004) 381–386.
- [6] T. Hirai, S. Hayashi, Preparation and some properties of chemically vapour-deposited Si₃N₄-TiN composite, J. Mater. Sci. 17 (10) (1982) 1320–1328.
- [7] C.C. Liu, J.L. Huang, Micro-electrode discharge machining of TiN/Si₃N₄ composites, Br. Ceram. Trans. 99 (1) (2000) 149–152.
- [8] M. Wilhelm, C. Eder, W. Wruss, Characterization of SiC- and TiN-particle-reinforced Si₃N₄ composites, CFI, Ceram. Forum Int. 77 (1) (2000) 25–28
- [9] B.T. Lee, H.D. Kim, In situ synthesis of TiN-reinforced $\rm Si_3N_4$ matrix composites using Si and sponge Ti powders, J. Mater. Sci. 34 (24) (1999) 6169–6176.
- [10] R. Duan, G. Roebben, J. Vleugels, O.V. Biest, TiO₂ additives for in situ formation of toughened silicon nitride-based composites, Mater. Lett. 57 (28) (2003) 4156–4161.
- [11] B.T. Lee, Y.J. Yoon, K.H. Lee, Microstructure characterization of electroconductive Si_3N_4 -TiN composites, Mater. Lett. 47 (1) (2001) 71–76.
- [12] B. Siffert, A. Jada, J. Eleli-Letsango, Stability calculations of TiO₂ non-aqueous suspensions: thickness of the electrical double layer, J. Colloid Interf. Sci. 167 (2) (1994) 281–286.
- [13] B. Siffert, A. Jada, J. Eleli-Letsango, Location of the shear plane in the electric double layer in an organic medium, J. Colliod Interf. Sci. 167 (2) (1994) 327–333.
- [14] T. Kakui, T. Miyauchi, H. Kamiya, Analysis of the action mechanism of polymer dispersant on dense ethanol alumina suspension using colloidal probe AFM, J. Eur. Ceram. Soc. 25 (5) (2005) 655–661.
- [15] L. Wang, W. Sigmund, F. Aldinger, A novel class of dispersants for colloidal processing of Si₃N₄ in non-aqueous media, Mater. Lett. 40 (1) (1999) 14–17.
- [16] H. Kamiya, Y. Fukuda, Y. Suzuki, M. Tsukada, T. Kakui, M. Naito, Effect of polymer dispersant structure on electrosteric interaction and dense alumina suspension behavior, J. Am. Ceram. Soc. 82 (12) (1999) 3407– 3412.
- [17] H. Kamiya, S. Matsui, T. Kakui, Analysis of action mechanism of anionic polymer dispersant with different molecular structure in dense silicon nitride suspension by using colloidal probe AFM, Ceram. Trans. (Colloidal Ceramic Processing) 152 (2003) 83–92.
- [18] T. Yano, J. Tatami, K. Komeya, T. Meguro, Microstructural observation of silicon nitride ceramics sintered with addition of titania, J. Ceram. Soc. Jpn. 109 (5) (2001) 396–400.
- [19] J. Tatami, M. Toyama, K. Noguchi, K. Komeya, T. Meguro, M. Komatsu, Effect of TiO₂ and AlN additions on the sintering behavior of the Si₃N₄-Y₂O₃-Al₂O₃ System, Key Eng. Mater. 247 (2003) 83–86
- [20] K. Ueno, T. Inoue, S. Sodeoka, M. Suzuki, H. Ishikawa, K. Uchiyama, T. Inui, Si₃N₄-matrix composite with TiN particles formed by in-situ reaction, J. Ceram. Soc. Jpn. 105 (4) (1997) 304–307.