

CERAMICS INTERNATIONAL

Ceramics International 33 (2007) 1349-1356

www.elsevier.com/locate/ceramint

Microstructure and kinetics of formation of Si₂N₂O and Si₃N₄ into Si porous preforms by chemical vapor infiltration (CVI)

J.L. de la Peña, M.I. Pech-Canul*

Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Carretera Saltillo, Monterrey Km. 13, Saltillo Coahuila México 25900, Mexico

Received 7 November 2005; received in revised form 26 December 2005; accepted 10 May 2006 Available online 1 December 2006

Abstract

The kinetics of formation of Si_2N_2O and Si_3N_4 into Si porous preforms via chemical vapor infiltration (CVI) in N_2 and N_2 –5% NH₃, has been investigated. In addition, the effect of the following processing parameters on the phase, amount and product morphology was investigated: atmosphere, time, temperature, gas flow rate, particle size and porosity of Si porous preforms. A Taguchi experimental design allowed establishing that atmosphere is the parameter that most significantly influences the type of phase formed and that processing time and temperature are the parameters that most significantly affect the amount and morphology of the phases formed. In nitrogen Si_2N_2O is formed primarily with morphology of whiskers and fibers which grow with time and temperature. In N_2 –5% NH₃, Si_3N_4 is formed predominantly in the form of coatings on the Si particles. Although thermodynamically, the reaction for formation of Si_2N_2O is more feasible than that for Si_3N_4 , kinetically the reaction for formation of the latter occurs faster. The activation energy (*E*) for the reaction with pure N_2 is 88.3 kJ/mol while the corresponding value for the reaction with N_2 –5% NH₃ is 48.3 kJ/mol.

© 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Powders: gas phase reactions; B. Porosity; B. Whiskers; D. Si₃N₄

1. Introduction

Porous ceramics are attractive materials for a wide variety of technological applications including molten metal filters, catalyst supports, radiant burners and preforms for the production of metal/ceramic composites by the melt infiltration route [1,2]. The major requirements for these applications are that the materials possess high temperature stability, excellent thermal shock resistance and resistance to chemical attack. A variety of potential materials can be considered to produce porous ceramic materials, including silicon carbide, alumina, boron nitride, silicon nitride and oxynitride.

Silicon nitride (Si_3N_4) and silicon oxynitride (Si_2N_2O) are strong candidates for producing porous materials because of their attractive properties. The former has an exceptional wear and corrosion resistance and high-temperature mechanical properties. Due to its low thermal expansion coefficient and high

thermal conductivity, Si_3N_4 has excellent thermal shock resistance [3]. Silicon oxynitride (Si_2N_2O) offers superior chemical and oxidation resistance in many environments at high temperatures [4,5]. The most common applications for Si_2N_2O reported in the literature include cutting tools, wear parts and heat engine components. However, its use has been limited due to barriers associated to synthesis and densification [5].

The conventional routes for synthesis of Si₃N₄ powders such as the carbothermic reduction of SiO₂ and the direct nitridation of silicon powders entail solid–gas reactions in the temperature range 1473–1823 K [3]. However, some disadvantages related to the presence of impurities in the products have motivated the use of gas phase processing methods, like the chemical vapor deposition (CVD) route. Moreover, the gas phase routes allow producing Si₃N₄ with a variety of morphologies, including fine powders, single-crystals/polycrystals, whiskers/fibers and films/coatings [6,7]. Although silicon chloride (SiCl₄) is one of the most common silicon precursors for the synthesis of Si₃N₄ by CVD, the use of silicon tetrafluoride (SiF₄) has also been considered in the last years [8–11]. Indeed, it has been reported that SiCl₄ tends to polymerize and clog the exit port of the reactors

^{*} Corresponding author. Tel.: +52 844 4 38 9600; fax: +52 844 4 38 9610. E-mail address: martin.pech@cinvestav.edu.mx (M.I. Pech-Canul).

[8]. It is noteworthy that in the conventional CVD systems, the silicon precursors (SiCl₄, SiF₄ and SiH₄) are normally supplied to the reactors from an external gas container [8,9].

Due to the growing interest in the production of Si₃N₄ for a variety of applications, alternative processing methods as the combustion synthesis route (CS), the reaction of Mg₂Si with NH₄Cl and the reaction of SiCl₄ with NaN₃, have been developed in recent years [12–15]. The synthesis of Si₃N₄ fibers through the CS route in nitrogen was reported by Rodriguez et al. [12] and Cao et al. [13]. In the work by Rodriguez et al., the use of high pressures of nitrogen (12 MPa) for the production of β-Si₃N₄ fibers seemed to be a process drawback. This problem was overcome later by Cao et al. by using lower nitrogen pressures (0.5-1 MPa); however, they also used sodium azide (NaN₃) as a catalyst for the growth of Si₃N₄ whiskers. Unfortunately, like most of the azides, NaN₃ is an unstable substance highly sensitive to shock, used in the manufacture of explosives; therefore, cost and handling difficulties may cause inconveniences to its use. In addition, apparently, these particular processes are limited to the production of Si₃N₄ only with the morphology of whiskers/ fibers. The routes involving the reactions with NH₄Cl and SiCl₄ also have the inconvenient of high processing pressures (30– 40 MPa) and the latter also uses NaN₃ [14,15]. Recently, in the work by Leal-Cruz, SiF₄ obtained from the thermal decomposition of sodium hexafluorosilicate (Na₂SiF₆) was used to produce Si₃N₄ in an in situ mode through gas phase reactions in nitrogen containing atmospheres at pressures slightly above to that of the atmospheric pressure and temperatures up to 1573 K [10,11]. The use of Na₂SiF₆ as a silicon solid precursor allows producing fine powders, whiskers/fibers and coatings.

A variant of the CVD method, referred to as chemical vapor infiltration (CVI) allows the deposition of new phases by the transport of gas precursors through a porous ceramic body, usually known as the preform. During the CVI process, the gaseous reactants diffuse and infiltrate through the porous structures where the gas-reactants undergo decomposition and chemical reactions to deposit the phase of interest on the surface of the constituents (fibers, particles) in the preform [16]. Although one of the most common procedures for producing porous materials is the impregnation of polyurethane sponge with slurries, the chemical vapor infiltration (CVI) route also offers the potential for producing porous structures. Furthermore, depending on the processing parameters, dense bodies for use in a variety of applications may be produced. In this work, the kinetics of formation of Si₂N₂O and Si₃N₄ into Si porous preforms via CVI during the thermal decomposition of Na₂SiF₆ has been investigated. In addition, the effect of the processing parameters on the type of phase, amount and product morphology was studied.

2. Experimental procedures

A Taguchi experimental design L_{32} was used to investigate the effect of the processing parameters on the type (Si_3N_4 and Si_2N_2O), amount and morphology of phases formed and deposited into silicon porous preforms. Table 1 shows the

Table 1 Parameters and levels tested in the L_{32} Taguchi experiment design

No.	t (min)	T (K)	Flow rate	P (%)	PS (μm)
			(cm ³ /min)		
$\overline{L_1}$	30	1273	46.5	40	20
L_2	30	1373	93	50	40
L_3	30	1473	120.2	60	60
L_4	30	1573	240.4	70	80
L_5	60	1273	46.5	50	60
L_6	60	1373	93	40	80
L_7	60	1473	120.2	70	20
L_8	60	1573	240.4	60	40
L_9	90	1273	93	70	20
L_{10}	90	1373	46.5	60	40
L_{11}	90	1473	240.4	50	60
L_{12}	90	1573	120.2	40	80
L_{13}	120	1273	93	60	60
L_{14}	120	1373	46.5	70	80
L_{15}	120	1473	240.4	40	20
L_{16}	120	1573	120.2	50	40
L_{17}	30	1273	240.4	70	40
L_{18}	30	1373	120.2	60	20
L_{19}	30	1473	93	50	80
L_{20}	30	1573	46.5	40	60
L_{21}	60	1273	240.4	60	80
L_{22}	60	1373	120.2	70	60
L_{23}	60	1473	93	40	40
L_{24}	60	1573	46.5	50	20
L_{25}	90	1273	120.2	40	40
L_{26}	90	1373	240.4	50	20
L ₂₇	90	1473	35	60	80
L_{28}	90	1573	93	70	60
L_{29}	120	1273	120.2	50	80
L_{30}	120	1373	240.4	40	60
L_{31}	120	1473	46.5	70	40
L_{32}	120	1573	93	60	20

P: silicon preform porosity; PS: silicon particle size in the preform.

parameters and levels tested in the experiment. Predetermined amounts of commercial silicon powders were used to prepare by uniaxial compaction, cylindrical preforms (3 cm in diameter \times 3 cm high) with the characteristics given in Table 1. Similarly, an amount of 20 g of powders of the salt Na_2SiF_6 was used to prepare cylindrical compacts (3 cm in diameter \times 4 cm long) with 60% porosity.

Chemical vapor infiltration trials were performed in a reactor consisting of a horizontal alumina-tube furnace (3.1 cm in diameter × 76 cm long) provided with end-cap fittings to control the process atmosphere. The silicon preforms were placed in the center of the reactor and the Na₂SiF₆ compacts were positioned nearby the gas entrance, where the temperature is in the range 573-623 K [10,11]. According to Table 1, the specimens were heated in the corresponding atmosphere at a rate of 15 °C/min up to the test temperature and then maintained at this temperature for a given test time. It is noteworthy that the programmed test temperatures match with temperatures in the center of the tube, which correspond to the hot zone of the reactor. The molar ratio levels of N2 and SiF4 were established according to the rate of the thermal decomposition of Na₂SiF₆ and the gas by-products were made to bubble into a deposit containing distilled water. Throughout the trials the reactor was maintained at a constant pressure,

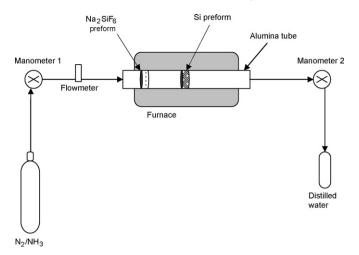


Fig. 1. Schematic representation of the experimental set-up [10,11].

which is slightly above to that of the atmospheric pressure (gage pressure: 8 ± 1 mbar) and the temperatures of the Si preforms and salt-compacts were monitored using K-type thermocouples. Fig. 1 is a schematic of the experimental set-up used in the investigation. After cooling to room temperature the infiltrated specimens were removed from the furnace for characterization. The total amount of phases deposited into the preforms was determined gravimetrically and the microstructural characterization was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX).

3. Results and discussions

3.1. Effect of processing parameters on the type of phases formed

Results from XRD and SEM reveal that Si_3N_4 as well as Si_2N_2O were formed in both, nitrogen and nitrogen-5% ammonia atmospheres. However, while in pure nitrogen the phase predominantly formed is Si_2N_2O , in nitrogen-ammonia Si_3N_4 was the favored compound. In Fig. 2, XRD patterns of specimens tested in N_2 are shown. At medium and high levels of temperature and time, only silicon oxynitride is detected as a new phase. Indeed, silicon Si_3N_4 is revealed only in specimens processed at 1573 K for 120 min (trial L_{16}).

In N_2 –5% NH_3 , Si_3N_4 starts appearing at intermediate temperatures and times and with higher intensities. Moreover, the higher the temperature and time the higher the tendency for formation of exclusively Si_3N_4 . In Fig. 3, XRD patterns of specimens tested in N_2 – NH_3 are shown. A qualitative comparison of the XRD patterns from trials L_{16} and L_{32} shows that in N_2 –5% NH_3 the selective production of Si_3N_4 is favored. Moreover, under the conditions of trial L_{32} , Si_3N_4 is formed both in the α and β polymorphs. A comparison of the results from specimens L_{12} and L_{28} , tested under the same conditions but in different atmospheres shows that an addition of 5% ammonia to nitrogen triggers formation of Si_3N_4 at lower temperatures and times.

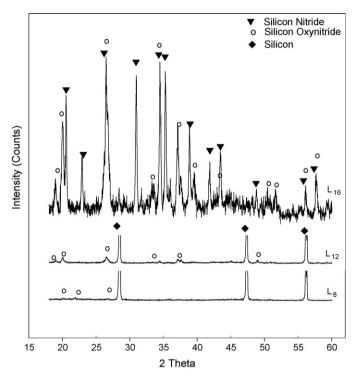


Fig. 2. XRD patterns from specimens tested in N₂ atmosphere.

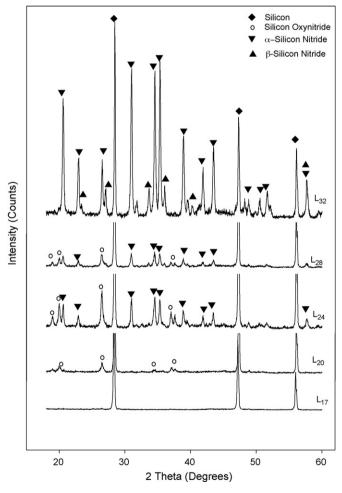


Fig. 3. XRD patterns from specimens tested in N₂-5% NH₃ atmosphere.

Silicon nitride can be formed according to the following reactions:

$$3SiF_4(g) + 2N_2(g) \rightarrow Si_3N_4(s) + 6F_2(g)$$
 (1)

$$3SiF_4(g) + N_2(g) + 2NH_3 \rightarrow Si_3N_4(s) + 6HF + 3F_2(g)$$
(2)

A plot of the Gibbs free energy as a function of temperature for the reactions of silicon tetrafluoride (SiF_4) with N_2 , NH_3 and N_2 – NH_3 shows the benefits of adding ammonia to the atmosphere of pure nitrogen (see Fig. 4).

Formation of silicon oxynitride can be explained according to three possibilities. The first one is related to the oxidation of the Si_3N_4 formed in accordance with reactions (1) and (2):

$$2Si_3N_4(s) + (3/2)O_2(g) \to 3Si_2N_2O(s) + N_2(g)$$
 (3)

Under normal oxygen pressures, Si₃N₄ is thermodynamically unstable with respect to oxidation. Even though it has excellent high-temperature mechanical properties, suffers from poor oxidation resistance at high temperatures. Moreover, although thermodynamically reaction (3) is highly feasible (for instance, at 1500 K, $\Delta G_R = -1063$ kJ/mol), the oxidation of Si₃N₄ occurs slowly, following approximately a kinetics with parabolic behavior [17]. Once oxidation has occurred, the oxide film formed serves as a protection against catastrophic oxidation by precluding the transport of oxygen atoms through the nitride surface. In fact, passive oxidation and the ability of Si₃N₄ to resist high temperatures under oxidizing conditions rely on the integrity and stability of the oxide layer in the surface. The second possibility is the direct nitridation of silicon in the porous preforms by the diffusion of nitrogen atoms into the native SiO₂ layer of Si. The thermal nitridation of ultrathin SiO₂ films in NH₃ has been reported previously by Jintsugawa et al., suggesting that due to the reaction with ammonia, the nitrogen species are adsorbed at the outermost SiO₂ surface, diffuse into the SiO₂ film and then nitride the Si substrate surface at the SiO₂/Si interface [18].

The third alternative involves the reaction of SiF₄ with nitrogen and oxygen in the atmosphere, in accordance with the following reaction:

$$6SiF_4(g) \, + \, (3/2)O_2(g) \, + \, N_2(g) \, \rightarrow \, 3Si_2N_2O(s) \, + \, 12F_2(g) \end{(4)}$$

Due to the lack of thermodynamic data, the Gibbs free energy for reaction (4) was calculated only at the temperature of 1500 K. According to Fig. 4, it is evident that the reactions of SiF₄ with nitrogen or nitrogen–ammonia are much less thermodynamically feasible than reaction (4). Since oxidation of Si₃N₄ occurs slowly and formation of Si₂N₂O via diffusion of oxygen atoms through the silica layer of Si involves NH₃, it is improbable that the Si₂N₂O detected in the specimens treated in N₂ was formed by the oxidation of Si₃N₄ during the cooling event or by nitridation of SiO₂. Rather, it is most likely that it was formed through reaction (4). The oxygen involved in reaction (4) comes from the ultra high purity (UHP) N₂ as an impurity. According to these results, traces (<5 ppm) of oxygen (as O₂ or H₂O) are sufficient to produce silicon oxynitride via reaction (4).

3.2. Effect of processing parameters on the product morphology

Results from the analysis by SEM of specimens processed in N_2 reveal that Si_2N_2O whiskers are predominantly deposited

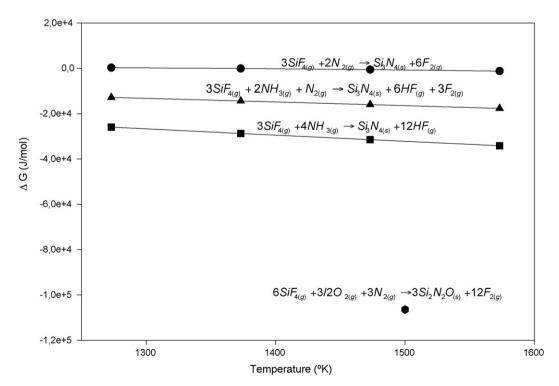
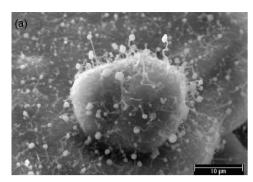



Fig. 4. Gibbs free energy plots of reactions involving SiF₄, N₂ and N₂–NH₃ as a function of temperature.

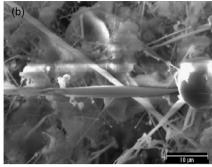
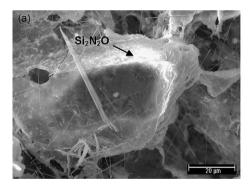



Fig. 5. SEM photomicrographs showing Si₂N₂O whiskers and fibers grown in N₂.

into the interstices of the silicon preforms and that although both, processing time and temperature have a notable influence, temperature is the parameter that most significantly affects the amount, size and product morphology. In addition, with increase in time and temperature, the whiskers tend to grow and the preforms become denser. An increase in temperature and time from 1373 to 1473 K and from 30 to 120 min processing time respectively, promotes a change in the $\rm Si_2N_2O$ morphology from whiskers to fibers. This can be observed in Fig. 5 from micrographs of $\rm L_2$ and $\rm L_{15}$ specimens.

As shown in Fig. 6 in micrographs of specimens from trials L_7 and L_8 , a variation in temperature from 1473 to 1573 K, at a constant processing time of 60 min results in a modification in the morphology of $\mathrm{Si}_2\mathrm{N}_2\mathrm{O}$ from thin to thick coatings on the Si particles.

In N_2 –5% NH₃, Si_2N_2O and Si_3N_4 are deposited on the Si particles in both morphologies (whiskers/coatings) but mainly as coatings. In Fig. 7, SEM photomicrographs of specimens from trials L_{20} and L_{24} are shown. At constant temperature (1573 K) and gas flow rate (46.5 cm³/min), but with variation in the processing time from 30 to 60 min, formation of Si_3N_4 is activated. As illustrated in Fig. 7, the Si_2N_2O and Si_3N_4 coatings become denser when the processing time is prolonged to 60 min. With increase to the highest levels of temperature and time, formation of silicon nitride is primarily favored and an augment in the densification of the preforms is observed. This is shown in Fig. 8 from micrographs obtained in specimens L_{28} and L_{32} . The tendency for formation of either whiskers/fibers or coatings of fine powders is related to the concentration (supersaturation) of adsorbed atoms or molecules of the new

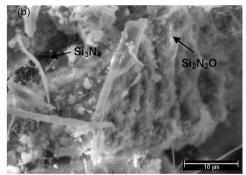
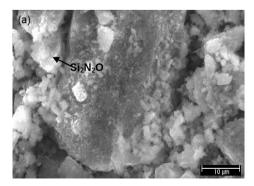



Fig. 6. SEM photomicrographs showing thin and thick Si₂N₂O coatings grown for 60 min at: (a) 1473 °C and (b) 1573 °C, respectively.

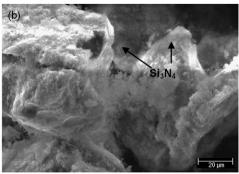
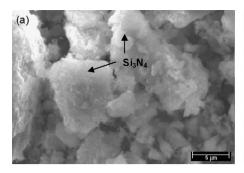



Fig. 7. SEM photomicrographs showing Si₂N₂O and Si₃N₄ coatings deposited in N₂–5% NH₃ at 1573 °C, using a gas flow rate of 46.5 cm³/min for: (a) 30 min and (b) 60 min.

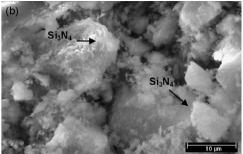


Fig. 8. SEM photomicrographs showing Si₃N₄ coatings deposited in N₂-5% NH₃ at 1573 °C for: (a) 90 min and (b) 120 min.

phase on the substrate surface. Typically by the CVD processes, whiskers are formed at low levels of supersaturation and high temperatures, while fine powders (polycrystals) are favored at medium temperatures and high supersaturation levels [19].

3.3. Effect of processing parameters on the amount of phases formed

The total amount of phases formed during the tests was determined measuring the weight gain of the infiltrated specimens. Fig. 9 is a chart of the weight gain (%) in the Si preforms for all the 32 tests. A simple comparison shows that in N₂–5% NH₃ the weight of the preforms increased up to 18% while in nitrogen the highest weight gain was of 12%. The increase in the amount of Si₃N₄ and Si₂N₂O formed and deposited when ammonia is present can be explained in the light of the thermal and chemical stability of NH₃ in comparison to that for N₂. Specifically, the ionization potential for NH₃ is 10.2 eV while the corresponding value for N₂ is 15.576 eV [20]. Furthermore, it can also be attributed to the strength of the bonds in nitrogen and ammonia. At 298 K, the strengths of the H–N and N–N bonds are 75 and 226.8 kcal/mol, respectively [21].

In order to determine the effect of the processing parameters on the amount of Si_3N_4 and Si_2N_2O formed together into the silicon preforms, analysis of variance (ANOVA) was

performed. Analysis of variance provides insight into the optimum process parameters and allows estimating the amount of phases formed when using the optimum process parameters [22]. In addition, ANOVA provides a means of estimating the percent contribution of each of the parameters tested to the variability in the measured quantities. In accordance with Table 2, the parameter that most significantly affects the variability in the amount of phases formed is the temperature, with a relative contribution of 46.5%, followed by processing time, with a relative contribution of 24% and by the process atmosphere with 8.5%. The effect of Si particle size, preform porosity and gas flow rate is insignificant. Table 3 contains the optimum conditions to maximize the amount of deposited phases (Si₃N₄ and Si₂N₂O) into the silicon preform, obtained from the analysis of variance. Verification trials conducted under the conditions given in Table 3 allowed obtaining specimens with an average weight gain of 21%. Although apparently, preform porosity, silicon particle size and gas flow rate do not have important effects on the amount of phases formed, the optimization analysis revealed that the amount of phases deposited is enhanced if the preforms have a porosity of 50% with a Si particle size of 20 µm, and if infiltration is carried out with a gas flow rate of 120 cm³/min. These results can be explained as follows. High levels of porosity in the preforms permit that the reactants and/or products pass through the interstices of the porous structures, especially at high gas



Fig. 9. Chart of the weight gain (%) in the Si preforms for all the 32 tests.

Table 2 ANOVA table for the amount of silicon nitride and oxynitride formed

Factors	d.f.	SS	MS	F	P~(%)
Atmosphere	1.00	52.17	52.17	13.29	8.50
Time	3.00	149.92	49.97	12.73	24.00
Temperature	3.00	288.38	96.13	24.49	46.50
Porosity	3.00	10.72	3.57	0.91	2.00
Particle size	3.00	30.45	10.15	2.59	5.00
Flow rate	3.00	28.47	9.49	2.42	4.50
Error	15.00	58.88	3.93	_	9.50
Total					100.00

d.f.: degrees of freedom; SS: sum of squares; MS: mean of squares; F: variance ratio; P: percentage of contribution.

Table 3
Optimum conditions for maximizing the amount of phases formed

Factor	Level
Atmosphere	N ₂ -5% NH ₃
Time	2 h
Temperature	1573 K
Porosity	50%
Si particle size	20 μm
Gas flow rate	120.4 cm ³ /min

flow rates, thus decreasing the efficiency of deposition. Besides, nucleation of Si_3N_4 is enhanced with a decrease in particle size. Therefore, high levels of porosity in the preforms, high flow rate levels and large Si particle sizes are non-ideal parameters for deposition by CVI of the phases formed.

3.4. Kinetics of reactions for formation of Si_2N_2O and Si_3N_4

The study on the kinetics of the reactions was carried out under the following considerations: (a) the weight gain in the specimens tested in pure N_2 is due only to Si_2N_2O and in N_2 – NH_3 the weight increase is attributed only to Si_3N_4 ; (b) a reacting system with constant volume, pressure and temperature; (c) the

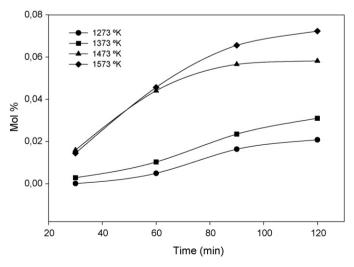


Fig. 10. Plots of mol% as a function of time for various temperatures from tests conducted in N_2 .

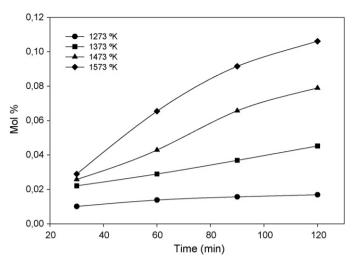


Fig. 11. Plots of mol% as a function of time for various temperatures from tests conducted in N_2 -5% NH_3 .

reactions for formation of both phases are simple, that is, each one of them can be represented by only one stoichiometric reaction and one velocity equation. The reactions considered for formation of Si₃N₄ and Si₂N₂O are given in Eqs. (2) and (4), correspondingly. The total molar quantity of each phase was determined from the weight gain of the silicon preforms plus the amount of products collected in a container installed after the port exit (product trap). Figs. 10 and 11 are plots of the amount of Si₂N₂O and Si₃N₄ formed (in mol%) as a function of time for various temperatures, respectively. In nitrogen, a significant increase in the formation of Si₂N₂O is observed when the temperature is varied from 1373 to 1473 K.

Simple models were considered in the analysis for the determination (by the differential method) of the magnitude of the order of reactions and rate constants:

$$\frac{\partial C_{\text{Si}_{3}\text{N}_{4}}}{\partial t} = k_{1} C_{\text{Si}_{3}\text{N}_{4}}^{n_{1}} \tag{5}$$

$$\frac{\partial C_{\text{Si}_2\text{N}_2\text{O}}}{\partial t} = k_2 C_{\text{Si}_2\text{N}_2\text{O}}^{n_2} \tag{6}$$

where k_1 is the constant of reaction for Si₃N₄, k_2 the constant of reaction for Si₂N₂O, n_1 the order of reaction for Si₃N₄, n_2 the order of reaction for Si₂N₂O; $C_{\text{Si}_2\text{N}_2\text{O}}$ and $C_{\text{Si}_3\text{N}_4}$ are the molar concentrations of Si₂N₂O and Si₃N₄, respectively. The orders and constants of reactions determined are summarized in

Table 4 Variation with temperature of orders of reaction and reaction rate constants

Atmosphere	1273 K	1373 K	1473 K	1573 K
Nitrogen Order of reaction (n_2) Constant of reaction $(k_2) \text{ (min}^{-1})$	0.99 6.58E-05	0.97 1.14E-04	0.9 1.82E-04	0.89 3.0E-04
N_2 -5% NH ₃ Order of reaction (n_1) Constant of reaction (k_1) (min ⁻¹)	0.4 7.45E-04	0.38 1.04E-03	0.37 1.38E-03	0.33 1.78E-03

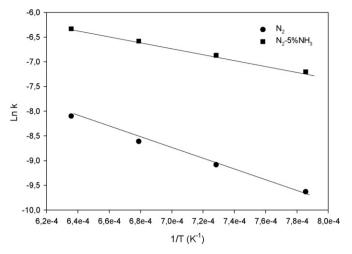


Fig. 12. Arrhenius plots for reactions in N2 and N2-5% NH3.

Table 4. The effect of temperature on the reaction rate constant is given by the activation energy, which is calculated using the Arrhenius equation:

$$k = k_0 e^{-E/RT} \tag{7}$$

where E is the activation energy, k_0 the pre-exponential factor, R the gas constant and T is the absolute temperature. According to the Arrhenius plots, shown in Fig. 12, the activation energies (E) for reactions (2) and (4) are 88.3 and 48.3 kJ/mol, respectively. Although thermodynamically, the reaction for formation of Si_2N_2O is more feasible than that for Si_3N_4 , results from this work suggest that kinetically, the reaction for formation of silicon nitride occurs faster than reaction (4).

4. Summary and conclusions

Silicon nitride and oxynitride have been synthesized by the reaction of silicon tetrafluoride (SiF₄) with N₂–5% NH₃ and N₂ respectively, and deposited into Si preforms via chemical vapor infiltration (CVI). The Si precursor (SiF₄) is formed in situ during the thermal decomposition of sodium hexafluorosilicate (Na₂SiF₆). It was found that the processing atmosphere is the parameter that most significantly affects the phase produced (Si₂N₂O or Si₃N₄). While in nitrogen, formation of Si₂N₂O is preferentially promoted, in N₂-5% NH₃, the production of Si₃N₄ is predominantly favored. Although both, whiskers and coatings are produced in nitrogen, whiskers are preferentially formed. By contrast, in the ammonia containing atmosphere, coatings on the Si particles are mainly produced. The whiskers/ fibers and coatings produced in both atmospheres are observed to grow with time and temperature. Although thermodynamically, formation of Si₂N₂O is more spontaneous, in the presence of 5% ammonia, kinetically formation of Si₃N₄ results favored. The activation energy for formation of Si₂N₂O is 88.3 kJ/mol and the corresponding value for Si₃N₄ production is 48.3 kJ/ mol.

Acknowledgements

This work was supported by the national council of science and technology (CONACyT) under contract No. 34826-U. Mr. J.L. de la Peña also expresses his gratitude to CONACyT for providing a scholarship.

References

- X. Pu, X. Liu, F. Qiu, L. Huang, Novel method to optimize the structure of reticulated porous ceramics, J. Am. Ceram. Soc. 87 (7) (2004) 1392– 1394.
- [2] K.B. Lee, H. Kwon, Fabrication and characteristics of AA6061/Si₃N₄ composites by the pressureless infiltration technique, Metall. Mater. Trans. A 30A (1999) 2999–3007.
- [3] W.E. Lee, W.M. Rainforth, Ceramic Microstructures, Property Control by Processing, Chapman & Hall, New York, 1994.
- [4] R.-G. Duan, G. Roebben, J. Vleugels, O.V. der Biest, In situ formation of Si₂N₂O and TiN in Si₃N₄-based ceramic composites, Acta Mater. 53 (2005) 2547–2554.
- [5] M. Radwan, T. Kashiwagi, Y. Miyamoto, New synthesis route for Si₂N₂O ceramics based on desert sand, J. Euro. Ceram. Soc. 23 (2003) 2337–2341.
- [6] R.F. Bunshah, et al., Deposition Technologies for Films and Coatings, Noyes Publications, New Jersey, 1982.
- [7] N. Ichinose, Introduction to Fine Ceramics Applications in Engineering, John Wiley & Sons, New York, 1987.
- [8] F.S. Gallasso, R.D. Veltri, W.J. Croft, Chemically vapor deposited Si₃N₄, Am. Ceram. Soc. Bull. 57 (4) (1978) 353–354.
- [9] R.S. Larson, Kinetics of silicon nitride chemical vapor deposition from silicon tetrafluoride and ammonia, J. Am. Ceram. Soc. 76 (8) (1993) 1930–1936
- [10] A.L. Leal-Cruz, Synthesis and Characterization of Silicon Nitride Reinforcements by the Thermal Decomposition of Na₂SiF₆ in Nitrogen Containing Atmosphere, M. Sc. Thesis, Cinvestav Saltillo, Saltillo Coah. México. 2004.
- [11] A.L. Leal-Cruz, M.I. Pech-Canul, In situ synthesis of Si₃N₄ from Na₂SiF₆ as a silicon solid precursor, Mater. Chem. Phys. 98 (2006) 27–33.
- [12] I.G. Cano, M.A. Rodríguez, Síntesis of β-silicon nitride by SHS: fiber growth, Scripta Mater. 50 (2004) 383–386.
- [13] Y.G. Cao, H. Chen, J.T. Li, C.C. Ge, S.Y. Tang, J.X. Tang, X. Chen, Formation of α -Si₃N₄ whiskers with addition of NaN₃ as catalyst, J. Cryst. Growth 234 (2002) 9–11.
- [14] K.B. Tang, J.Q. Hu, Q.Y. Lu, Y. Xie, J.S. Zhu, Y.T. Qian, A novel low-temperature synthetic route to crystalline Si₃N₄, Adv. Mater. 11 (8) (1999) 653–655.
- [15] Y. Gu, L. Chen, Y. Qian, Low-temperature synthesis of nanocrystalline α -Si₃N₄ powders by the reaction of Mg₂Si with NH₄Cl, J. Am. Ceram. Soc. 87 (9) (2004) 1810–1813.
- [16] K.L. Choy, Chemical vapour deposition of coatings, Prog. Mater. Sci. 48 (2003) 57–170.
- [17] F.L. Riley, Silicon nitride and related materials, J. Am. Ceram. Soc. 83 (2) (2000) 245–265.
- [18] O. Jintsugawa, M. Sakuraba, T. Matsuura, J. Murota, Thermal nitridation of ultrathin SiO₂ on Si by NH₃, Surf. Interface Anal. 34 (2002) 456–459.
- [19] J.M. Blocher Jr., Structure/property/process relationships in chemical vapor deposition CVD, J. Vac. Sci. Technol. 11 (4) (1974) 680–686.
- [20] R.C. Weast, Handbook of Chemistry and Physics, 51st ed., The Chemical Rubber Co., Cleveland Ohio, 1970, p. E-80.
- [21] R.C. Weast, Handbook of Chemistry and Physics, 51st ed., The Chemical Rubber Co., Cleveland Ohio, 1970, p. F-158.
- [22] R. Roy, A Primer on the Taguchi Method, Society of Manufacturing Engineers, Dearborn Michigan, 1990.