

CERAMICSINTERNATIONAL

Ceramics International 34 (2008) 439-441

www.elsevier.com/locate/ceramint

Short communication

Synthesis of bismuth oxide nanoparticles by the polyacrylamide gel route

Chuanyi Pan, Xuehui Li*, Furong Wang, Lefu Wang

The School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510640, PR China
Received 3 July 2006; received in revised form 3 July 2006; accepted 16 October 2006
Available online 13 December 2006

Abstract

A polyacrylamide gel route has been adopted for the preparation of bismuth oxide nanoparticles. Thermal behaviour of the polyacrylamide gel has been studied by means of thermogravimetry (TGA). The formation of monoclinic Bi_2O_3 nanocrystallites is confirmed by X-ray diffraction (XRD). Transmission electron microscopy (TEM) investigation revealed the average particle size of Bi_2O_3 nanoparticles to range from 30 nm to 50 nm.

© 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Polyacrylamide gel; B. Bismuth oxide; C. Nanoparticles

1. Introduction

Nanocrystalline particles generally display properties different from their bulk counterparts from which they are derived. Due to their unique physical and chemical properties, bismuth oxide nanoparticles have been used widely as an important component in the field of solid oxide fuel cells, gas sensors, varistors, electric and optical materials, high temperature superconductor materials, functional ceramics and catalysts, etc. [1,2]. Many chemical methods have been employed to prepare Bi₂O₃ nanoparticles, e.g. precipitation [3,4], flame spray pyrolysis [5], and sol–gel methods [6–9].

How to control the preparation steps is the key point of obtaining high quality nanoparticles with nanosize-dependent properties; sol–gel processing has been proved to control the material structure on a nanometer scale from the earliest stages of processing [10,11]. Many novel sol–gel methods have been developed recently. In 1989, a polyacrylamide gel process was described by Douy and Odier [12] for preparing three different ultrafine powders: YBa₂Cu₃O_{7-x}, 2SiO₂–3Al₂O₃ and LaAlO₃, and then Liu et al. [13] also reported the synthesis of the LSGM materials by the acrylamide polymerization technique. This

polymer gel method has attracted more and more attention and has been used to prepare many different oxide nanoparticles, metallic and oxide compounds, such as ZnO [14], Al₂O₃ [15], In₂O₃ [16], NdFe₁₀Mo₂ [17] and Ce_{1-x}Bi_xO_{2-x/2} solid electrolytes [18]. With polymeric chains forming a network, metal ions are entrapped evenly within the polyacrylamide gel, which is helpful for forming uniform oxide nanoparticles. Stepto Robert et al. [19] have introduced the theory about the formation, structure and properties of polymer networks. This polymer gel method differs from traditional preparation technique in two aspects: (a) no expensive alkoxide reactants are necessary and (b) relatively lower calcination temperature. We here report polymer gel process for the preparation of nanocrystalline Bi₂O₃.

2. Experimental

Bismuth nitrate and standard ammonium hydroxide solution, ammonium persulphate, acrylamide, *N*,*N'*-methylenebisacrylamide and citrate used are of AR grade. Desired quantities of citrate, acrylamide, *N*,*N'*-methylenebisacrylamide and ammonium persulphate as catalyst were added in turn to the dilute nitric acid solution of bismuth nitrate with concentration (Bi³⁺: 0.05 mol/l). NH₃·H₂O solution (1:1) was dropped into the mixing solution until the pH value reached 9. The mixture was stirred with water bath at room temperature, and then the

^{*} Corresponding author. Tel.: +86 20 87114707; fax: +86 20 87114707. E-mail address: cexhli@scut.edu.cn (X. Li).

mixing solution turned into gel at 60 °C with the slow increase of water bath temperature. The gel was dried at 120 °C for 48 h in vacuum drier. The xerogel thus formed was calcined in a tube furnace in air atmosphere at 460 °C for 4 h to obtain light yellow powder. The xerogel was studied by TGA (NETZSCH STA 449C) to define the precise calcination temperature. The X-ray diffraction (XRD) pattern was recorded by using a Japan Rigaku D/max-IIIA diffractometer with filtered Cu Kα radiation. For lattice parameter and interplanar distance (d) calculation, the samples were scanned in the 2θ range of 20° to 60° for a period of 5 s in the step scan mode. Silicon was used as an internal standard. Least squares method was employed to determine the lattice parameters. The TEM picture was recorded with Philips CM-300 instrument at the accelerating voltage of 200 kV. The ultrafine powders were sonically dispersed in amyl acetate for 1 h and were dropped and dried on a carbon-coated TEM copper grid.

3. Results and discussion

Typical TG curve for decomposition of the xerogel at a heating rate of 10 K/min in atmosphere is shown in Fig. 1.

TG curve in Fig. 1 indicates a weight loss of 76.5% occurred from ambient to 450 °C, which results from the dehydration and decomposition of the organic polymer, nitrate, etc. This value agrees well with the theoretical mass of the organic (76.83%) used in the reaction. Little change in the TG curve can be observed after 460 °C, which reveals that the bismuth polyacrylamide gel decomposed to yield bismuth oxide only at 460 °C, so here we choose 460 °C as the calcination temperature. The calcination temperature is remarkably lower than that used in the traditional precipitation method.

The XRD pattern of the obtained sample readily indexed Bi_2O_3 with monoclinic structure (JCPDS 41-1449). The broadened diffraction peaks which are observed indicate that the crystalline size of sample is very fine. The crystallite sizes were calculated by Debye–Scherrer equation, $D = k\lambda/\beta\cos\theta$, where D is the crystallite size, k is equal to 0.89 as a constant assuming that the particles are spherical, λ is the wavelength of the X-ray radiation ($\lambda = 0.15418$ nm), β is the line width obtained after elimination of the instrumental broadening and θ

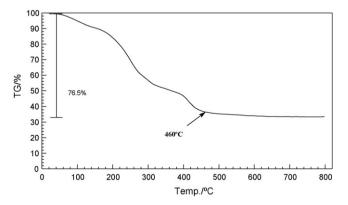


Fig. 1. TG curve of the xerogel prepared with 0.05 mol/l starting concentration of bismuth nitrate solution.

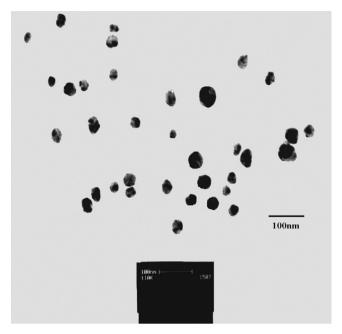


Fig. 2. TEM picture of the sample calcined at 460 °C for 4 h.

Table 1 Summary of the crystallite size, the calculated lattice parameters of the synthesized sample

Sample	The average crystallite size (nm)	The calculated lattice parameters		The literature lattice parameters	
		a	С	а	c
1	37.89	5.8506	7.5171	5.8499	7.5123

is the angle of diffraction. Bismuth oxide exists as two stable forms (monoclinic α -Bi₂O₃ and cubic-Bi₂O₃) and two other metastable phases (tetragonal β -Bi₂O₃ and bcc γ -Bi₂O₃), which can be converted to each other at certain conditionn [20]. The crystalline pattern of powders and the observed *d*-lines match the reported values for α -Bi₂O₃ phase.

The average crystalline size and lattice parameters of the synthesized powders were calculated and are shown in Table 1.

The calculated lattice parameters by least squares method are in good agreement with literature data reported for the α -Bi₂O₃ phase (JCPDS 41-1449), which also confirm that the synthesized powders are monoclinic Bi₂O₃ nanocrystallites.

The TEM image of the superfine Bi_2O_3 powder (Fig. 2) shows that Bi_2O_3 nanoparticles are well dispersed without evident agglomeration. The particles are of ellipsoid-like shape, and the average particle size varies from 30 nm to 50 nm, which was in good agreement with the XRD result.

4. Conclusions

A polyacrylamide gel process was used for the preparation of bismuth oxide nanoparticles. The precise calcination temperature of 460 $^{\circ}$ C is much lower than for the traditional precipitation method. The Bi₂O₃ nanocrystallite is in monoclinic form, and the average size of these nanoparticles ranges from 30 nm to 50 nm.

Acknowledgments

The authors gratefully acknowledge the support of Guangdong Natural Science Foundation of PR China under Contract No. 2004A10601001 during the course of this work.

References

- N.M. Sammes, G.A. Tompsett, H. Näfe, F. Aldinger, Bismuth based oxide electrolytes—structure and ionic conductivity, J. Eur. Ceram. Soc. 19 (1999) 1801–1826.
- [2] L. Moens, P. Ruiz, B. Delmon, M. Devillers, Enhancement of total oxidation of isobutene on bismuth-promoted tin oxide catalysts, Catal. Lett. 46 (1–2) (1997) 93–99.
- [3] A.T. Liu, P. Kleinschmidt, R.W. Davidge (Eds.), Novel Ceramic Fabrication Process and Applications, vol. 38, Institute of Ceramics, Staffs, UK, 1986, pp. 1–10.
- [4] R.K. Jha, R. Pasricha, V. Ravi, Synthesis of bismuth oxide nanoparticles using bismuth nitrate and urea, Ceram. Int. 31 (2005) 495–497.
- [5] L. Madler, S.E. Pratsinis, Bismuth oxide nanoparticles by flame pyrolysis, J. Am. Ceram. Soc. 85 (2002) 1713–1718.
- [6] M.M. Patil, V.V. Deshpande, S.R. Dhage, V. Ravi, Synthesis of bismuth oxide nanoparticles at 100 °C, Mater. Lett. 59 (2005) 2523–2525.
- [7] M. Anilkumar, R. Pasricha, V. Ravi, Synthesis of bismuth oxide nanoparticles by citrate gel method, Ceram. Int. 31 (2005) 889–891.
- [8] M.A. Matchett, M.Y. Chiang, W.E. Buhro, Soluble and volatile alkoxides of bismuth. The first structurally characterized bismuth trialkoxide: [Bi(μη¹-OCH₂CH₂OMe)₂(η¹-OCH₂OMe)]_∞, et al., Inorg. Chem. 29 (1990) 358–360.

- [9] M.D. Wildberger, J.-D. Grunwaldt, M. Maciejewski, T. Mallat, A. Baiker, Sol-gel bismuth-molybdenum-titanium mixed oxides. I. Preparation and structural properties, Appl. Catal. A Gen. 175 (1998) 11–19.
- [10] K.G. Caulton, L.G. Hubert-Pfalzgraf, Synthesis, structural principles and reactivity of heterometallic alkoxides, Chem. Rev. 90 (1990) 969– 995
- [11] L.L. Hench, J.K. West, The sol-gel process, Chem. Rev. 90 (1990) 33-72.
- [12] A. Douy, P. Odier, The polyacrylamide gel: a novel route to ceramic and glassy oxide powders, Mater. Res. Bull. 24 (1989) 1119–1126.
- [13] N. Liu, Y. Yuan, P. Majewski, F. Aldinger, Synthesis of La_{0.85}Sr_{0.15}-Ga_{0.85}Mg_{0.15}O_{2.85} materials for SOFC applications by acrylamide polymerization, Mater. Res. Bull. 41 (2006) 461–468.
- [14] N.K. Reddy, K.B. Reddy, V.N. Mulay, Synthesis of zinc oxide varistors with bismuth oxide additive by the sol–gel route, J. Mater. Sci. Lett. 18 (1999) 1167–1169.
- [15] H. Wang, L. Gao, W. Li, et al., Preparation of nanoscale α -Al₂O₃ powders by the polyacrylamide gel method, J. Inorg. Mater. 15 (2) (2000) 356–360 (in Chinese).
- [16] S. Liu, G. Zhao, X. Han, S. Tang, Study on preparation of In₂O₃ superfine powder via polymer-network process, J. Southeast Univ. (Engl. Ed.) 20 (June (2)) (2004).
- [17] S.F. Liu, J.H. Lin, X.L. Qian, et al., Synthesis of NdFe₁₀Mo₂ by a reduction–diffusion process, Chem. Mater. 8 (11) (1996) 2545–2547.
- [18] H. Zhao, S. Feng, W. Xu, A soft chemistry route for the synthesis of nano solid electrolytes $Ce_{1-x}Bi_xO_{2-x/2}$, Mater. Res. Bull. 35 (2000) 2379–2386.
- [19] F.T. Stepto Robert, I. Cail Jonathan, J.R. Taylor David, Formation, structure and properties of polymer networks: theory and modeling, Mater. Res. Innova. (7) (2003) 4–9.
- [20] O. Monnereau, L. Tortet, P. Llewellyn, F. Rouquerol, G. Vacquier, Synthesis of Bi₂O₃ by controlled transformation rate thermal analysis: a new route for this oxide? Solid State Ionics 157 (2003) 163–169.