

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 34 (2008) 1109-1112

Effects of crystal structures on luminescent properties of Eu doped Ca–Al–O systems

Yun Jin Park, Young Jin Kim*

Department of Materials Science & Engineering, Kyonggi University, Suwon 443-760, Republic of Korea

Available online 29 September 2007

Abstract

To investigate the correlations between the structural transformations of calcium aluminates and luminescent properties, Eu doped Ca–Al–O system phosphors were synthesized by solid-state reaction process in H_2 atmosphere with $CaCO_3$, Al_2O_3 , Eu_2O_3 , and a flux, H_3BO_3 as starting materials. Various phases such as $CaAl_2O_4$, $CaAl_4O_7$, $Ca_3Al_2O_6$, and $Ca_{12}Al_{14}O_{33}$ were achieved depending on firing temperature, flux amounts, and the mixing ratio of CaO to Al_2O_3 . Among various phases, only $CaAl_2O_4$ contributed to a strong blue emission at 440 nm with an excitation wavelength of 330 nm.

© 2007 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Powders: solid state reaction; C. Optical properties; D. Al₂O₃; Aluminate

1. Introduction

Many aluminates have been employed as host materials for phosphors by doping rare earth elements. Among them, Eu²⁺ doped CaAl₂O₄ and SrAl₂O₄ are well-known for blue and green phosphors, respectively [1–3].

Especially, CaAl₂O₄:Eu²⁺ phosphors have been studied to replace BaMgAl₁₀O₁₇:Eu²⁺ (BAM:Eu²⁺) blue phosphor in PDP (Plasma display panel). BAM:Eu²⁺ phosphors have a disadvantage of the luminescence deterioration due to the oxidation of Eu²⁺ to Eu³⁺ after post-heating process [4,5]. It is reported that CaAl₂O₄:Eu²⁺ phosphors can endure the oxidation process due to post-heating process, because CaAl₂O₄:Eu²⁺ phosphors have more thermodynamically stable structure than BAM:Eu²⁺ (β-alumina structure) phosphors [5].

CaAl₂O₄ has a β-tridymite structure, where there are three Ca²⁺ sites. One of Ca²⁺ sites is nine coordinated by oxygen atoms, the others are six coordinated. Eu²⁺ ions prefer two six-coordinated sites, because larger spaces are required for the substitution of Eu²⁺ ions due to the atomic size difference (Ca: 1.12 Å, Eu: 1.30 Å) [6]. Each oxygen atom is shared by two calcium atoms, forming a continuous chain structure of Ca–

Besides CaAl₂O₄, calcium aluminate systems easily generate the multi-phases compounds such as CaAl₄O₇, Ca₃Al₂O₆, and Ca₁₂Al₁₄O₃₃ according to the firing conditions and the mole ratio of CaO to Al₂O₃. In spite of numerous works on CaAl₂O₄:Eu²⁺ phosphors, the phase transformations of Eu doped calcium aluminate compounds and their effects on luminescent properties have been rarely reported until now.

In this study, Eu²⁺ doped calcium aluminates were synthesized by solid-state reaction. The effects of the firing conditions and the mole ratio of CaO to Al₂O₃ on the structural changes and luminescent properties of Eu doped Ca–Al–O systems were investigated.

2. Experimental procedure

 Eu^{2+} doped calcium aluminates were prepared by solid-state reaction. CaCO₃ (High Purity Chemical, 99.99%), Eu_2O_3 (Aldrich, 99.99%), and Al_2O_3 (Aldrich, 99.99%) were used as raw materials. As a flux, H_3BO_3 (Aldrich, 99.99%) was added to decrease the firing temperature and control the particle shapes. The amount of H_3BO_3 ranged from 2 to 10 wt%. The mixture was ball-milled for 24 h and fired at 1100–1300 °C for

⁽³⁾O–Ca [7]. To maintain the electroneutrality, Eu^{2+} ions are suitable to the substitution for Ca^{2+} sites, so the reduction atmosphere is favorable to protect the oxidation of Eu^{2+} to Eu^{3+} [8–10].

^{*} Corresponding author. Tel.: +82 31 249 9766; fax: +82 31 244 6300. E-mail address: yjkim@kyonggi.ac.kr (Y.J. Kim).

3 h under 5% H_2 (50 cc/min) atmosphere with and without the calcinations. Also, structural transformations and luminescent properties were investigated with various mole ratio of raw material (CaCO₃:Al₂O₃).

The crystalline of prepared powders were analyzed by XRD (X-ray diffractometer, SIEMENS D5005) using CuK α radiation ($\lambda = 1.54056$ Å). The scanning angle and scanning speed were $2\theta = 20^{\circ}-60^{\circ}$ and 5°/min, respectively. PL (Photoluminescence) properties were measured by PL (PSI Darsa-5000) system that employed a xenon ramp as an excitation source.

3. Results and discussion

XRD patterns of $0.99 CaCO_3 - 1Al_2O_3 - 0.01 Eu_2O_3$ with various firing temperatures are shown in Fig. 1. At $1100\,^{\circ}C$, $Ca_3Al_2O_6$ (C_3A) and $Ca_{12}Al_{14}O_{33}$ ($C_{12}A_7$) phases were dominant, but $CaAl_2O_4$ (CA) and $CaAl_4O_7$ (CA2) phase weakly appeared. With increasing the temperature up to $1300\,^{\circ}C$, XRD peaks of CA and CA_2 increased, but C_3A and $C_{12}A_7$ phases perfectly disappeared at $1300\,^{\circ}C$.

XRD peaks of CA and CA₂ phases increased as a function of the firing temperature, because the formation temperatures of CA and CA₂ phases were higher than C₃A and C₁₂A₇ as shown in Fig. 2, which showed a phase diagram of CaO–Al₂O₃ system compounds. The eutectic points of CA–C₁₂A₇ and CA–CA₂ are 1390 and 1600 °C, respectively. Multi-phases of calcium aluminates can be easily formed, even if the compositional ratio of CaO–Al₂O₃ is slightly deviated from the equilibrium. Furthermore, above eutectic temperatures, since solid and liquid states coexist, calcium aluminate multi-phases can be synthesized due to the coexistence of the meta-stable and stable phases during cooling process [11]. In this experiment, since

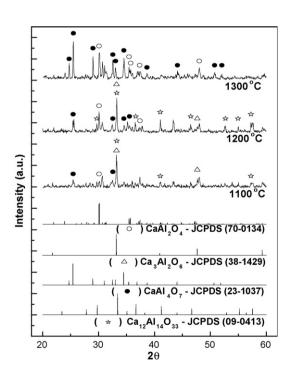


Fig. 1. XRD patterns of $0.99CaCO_3-1Al_2O_3-0.01Eu_2O_3$ as a function of various firing temperature with 5 wt% H_3BO_3 .

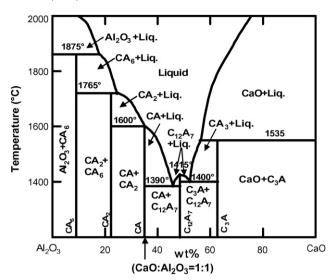


Fig. 2. Phase diagram of CaO-Al₂O₃ systems [17].

1 mol% Eu was added, the actual composition of CaO to Al_2O_3 was 0.99:1, leading to the deviation from the equilibrium composition for CA single phase. Moreover, adding a flux facilitated the reactions and lowered phase transformation temperature, resulting in the coexistence of solid and liquid phase.

PL excitation spectrum of 0.99CaCO_3 – $1\text{Al}_2\text{O}_3$ – $0.01\text{Eu}_2\text{O}_3$ –5 wt% $H_3\text{BO}_3$ fired at $1300\,^{\circ}\text{C}$ for the blue emission of 440 nm is shown in Fig. 3. It exhibited a broad absorption band in the range of 320–370 nm, and the maximum absorption was observed around 330 nm.

Fig. 4 shows PL spectra of $0.99 CaCO_3 - 1Al_2O_3 - 0.01 Eu_2O_3 - 5$ wt% H_3BO_3 with various firing temperatures. A blue emission band around 440 nm was observed with an excitation wavelength of 330 nm. PL intensity increased with increasing firing temperature, and maximum PL intensity was achieved at $1300~^{\circ}C$. It was closely correlated with the phase transforma-

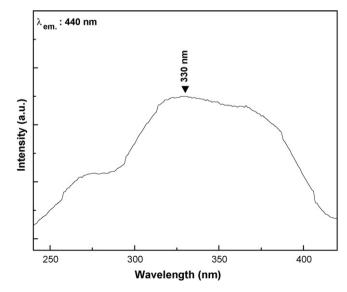


Fig. 3. PL excitation spectrum of $0.99CaCO_3-1Al_2O_3-0.01Eu_2O_3$ fired at $1300~^{\circ}C$ with 5 wt% H_3BO_3 for the emission of 440 nm.

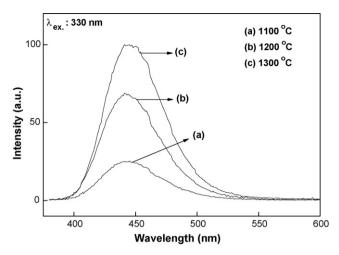


Fig. 4. PL spectra of $0.99CaCO_3-1Al_2O_3-0.01Eu_2O_3$ as a function of various firing temperature with 5 wt% H_3BO_3 . (a) $1100~^{\circ}C$, (b) $1200~^{\circ}C$, and (c) $1300~^{\circ}C$.

tions as shown in Fig. 1. At 1300 $^{\circ}$ C, CA and CA₂ phases were dominant and the PL intensity was high, while, at 1100 $^{\circ}$ C, XRD peaks of C₃A and C₁₂A₇ phases were strong exhibiting weak PL. This demonstrated that either CA or CA₂ might contribute to PL properties, but C₃A and C₁₂A₇ clearly did not. To verify it, phase transformations and the luminescent properties were investigated by changing the mole ratios of CaCO₃ to Al₂O₃.

XRD patterns and PL spectra as a function of various mole ratios of $CaCO_3$ to Al_2O_3 are shown in Figs. 5 and 6, respectively. As shown in Fig. 5, with decreasing amount of $CaCO_3$, CA phase decreased, while CA_2 phase increased. When the mole ratio of $CaCO_3$ to Al_2O_3 was 0.79:1, CA phase completely disappeared and only CA_2 phase was observed.

In Fig. 6, PL intensity increased with increasing the mole ratio of CaCO₃ to Al₂O₃. The highest PL intensity was observed with 0.99CaCO₃, but PL was too weak with 0.79CaCO₃ at

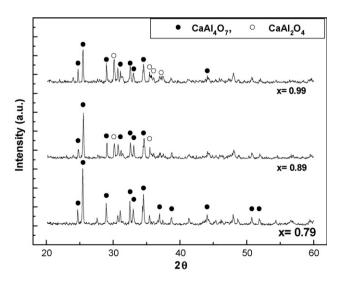


Fig. 5. XRD patterns of xCaCO₃–1Al₂O₃–0.01Eu₂O₃–5 wt% H₃BO₃ (x = 0.79, 0.89, 0.99) fired at 1300 °C.

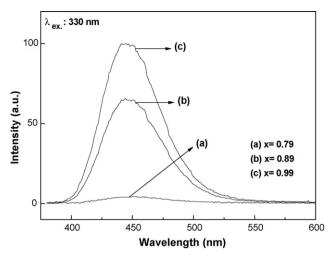


Fig. 6. PL spectra of xCaCO₃-1Al₂O₃-0.01Eu₂O₃-5 wt% H₃BO₃ (x = 0.79, 0.89, 0.99) fired at 1300 °C.

which only CA_2 phase was observed. It revealed that CA_2 phase did not serve to the luminescence, but only CA phase. Fig. 6 shows the band that was peaking at 440 nm, symmetric, and non-winding, which meant the existence of only one luminescent center of $CaAl_2O_4$: Eu^{2+} [1]. The emission spectra of $CaAl_2O_4$: Eu^{2+} originated from the transition between the $^8S_{7/2}$ (4f⁷) ground state and the excited 4f⁶5d¹ configuration [2,9,12]. 5d electrons of Eu^{2+} are sensitive to the changes of the crystal field strength due to the shielding function of outer shell [8,9,12,13]. Conclusively, among Eu^{2+} doped various phases, CA, CA_2 , C_3A , and $C_{12}A_7$, only CA contributed to PL emissions. This indicated the crystal fields surrounding the substituted Eu^{2+} ions are different in each phase, leading to the changes of luminescent properties.

Fig. 7 shows XRD patterns of 0.99CaCO₃-1Al₂O₃-0.01Eu₂O₃ fired at 1300 °C for 3 h as a function of various flux amounts. A flux is known to contribute to facilitating the

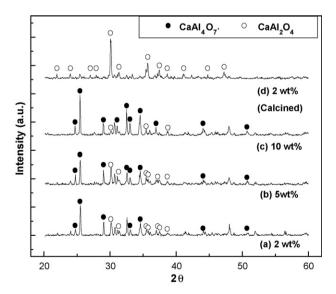


Fig. 7. XRD patterns of $0.99CaCO_3-1Al_2O_3-0.01Eu_2O_3$ as a function of various H_3BO_3 amounts fired at $1300\,^{\circ}C$. (a) 2 wt%, (b) 5 wt%, (c) 10 wt%, and (d) 2 wt% (calcined).

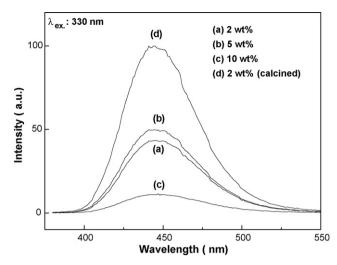


Fig. 8. PL spectra of 0.99CaCO_3 – $1\text{Al}_2\text{O}_3$ – $0.01\text{Eu}_2\text{O}_3$ as a function of various $H_3\text{BO}_3$ amounts. (a) 2 wt%, (b) 5 wt%, (c) 10 wt%, and (d) 2 wt% (calcined).

reaction of powder type raw materials [10,14,15]. CA and CA₂ phases coexisted with 2 and 5 wt% H_3BO_3 , but CA almost disappeared and CA₂ phase mainly existed with 10 wt%. Fig. 7(d) shows XRD pattern of 0.99CaCO₃–1Al₂O₃–0.01Eu₂O₃–2 wt% H_3BO_3 fired at 1300 °C for 3 h after calcinations at 1100 °C for 4 h. CA₂ phase disappeared and only a single phase CA was observed.

The flux, H_3BO_3 , acted an important role in synthesizing the phosphors. At a firing temperature, H_3BO_3 was decomposed into H_2O and B_2O_3 , and B_2O_3 became a liquid phase that existed between CaO and Al_2O_3 . B_2O_3 liquid phase promoted the rearrangement and reactions of solid particles. Pascoal et al. reported that second phases like CA_2 and $CaAl_2B_2O_7$ could be appeared due to the excess amount of B_2O_3 [13,16]. This was in accordance with our experimental result of Fig. 7(c) where CA_2 phase was dominant due to the large amount of H_3BO_3 .

PL spectra as a function of flux amounts are shown in Fig. 8. PL was almost same at 2 and 5 wt% H_3BO_3 , but abruptly decreased at 10 wt% H_3BO_3 . These results corresponded to XRD of Fig. 7, which showed both CA and CA₂ phases at 2 and 5 wt% H_3BO_3 , and only CA₂ phase at 10 wt% H_3BO_3 . PL intensity closely depended on XRD peak intensity of CA phase. Finally, CA synthesized with calcined CaCO₃ exhibited the strongest PL emission.

4. Conclusions

Correlation between the structural transformation and luminescent properties of Eu^{2+} doped $CaO-Al_2O_3$ systems were investigated. Various phases of CA, CA_2 , C_3A , and $C_{12}A_7$ were formed depending on the firing conditions and the mole ratio of CaO to Al_2O_3 . Among them, only Eu^{2+} doped CA phase

contributed to the blue emissions at 440 nm. With calcination process, a single phase CA could be perfectly achieved, and it exhibited strong blue emission band.

Acknowledgement

This work was supported by Grant No. R01-2005-000-10530-0 from Korea Science and Engineering Foundation.

References

- T. Aitasalo, J. Holsa, H. jungner, M. Lastusaari, J. Niittykoski, Sol-gel processed Eu²⁺-doped alkaline earth aluminates, J. Alloys Compd. 341 (2002) 76–78.
- [2] T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, Mechanisms of persistent luminescence in Eu²⁺, Re³⁺ doped alkaline earth aluminates, J. Lumin. 94 (2001) 59–63.
- [3] J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, Persistent luminescence of Eu²⁺ doped alkaline earth aluminates, MAl₂O₄:Eu²⁺, J. Alloys Compd. 323–324 (2001) 326–330.
- [4] Y. Lin, Z. Tang, Z. Zhang, C. Nan, Influence of co-doping different rare earth ions on the luminescence of CaAl₂O₄-based phosphors, J. Eur. Ceram. Soc. 23 (2003) 175–178.
- [5] S. Tanaka, I. Ozaki, T. Kunimoto, K. Ohmi, H. Kobayashi, Blue emitting CaAl₂O₄:Eu²⁺ phosphors for PDP application, J. Lumin. 87–89 (2000) 1250–1253.
- [6] T. Aitasalo, P. Deren, J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, W. Strek, Annihilation of the persistent luminescence of MAl₂O₄:Eu²⁺ by Sm³⁺ co-doping, Radiat. Meas. 38 (2004) 515–518.
- [7] S.X. Wang, L.M. Wang, R.C. Ewing, Ion irradiation-induced amorphization of CaAl₂O₄, Nucl. Instr. Methods Phys. Res. B 141 (1998) 509– 513
- [8] Y. Lin, Z. Zhang, Z. Tang, J. Zhang, X. Lu, The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors codoped by Eu₂O₃ and Dy₂O₃, Mater. Chem. Phys. 70 (2001) 156–159.
- [9] M. Peng, J. Qiu, I. Yang, C. Zhao, Observation of $Eu^{3+} \rightarrow Eu^{2+}$ in barium hexa-aluminates with β' or β -alumina structures prepared in air, Opt. Mater. 27 (2004) 591–595.
- [10] S.H. Han, Y.J. Kim, Luminescent properties of Ce and Eu doped Sr₄Al₁₄O₂₅ phosphors, Opt. Mater. 28 (2006) 626–630.
- [11] J.M. Rivas Mercury, A.H. De Aza, P. Pena, Synthesis of CaAl₂O₄ from powders: particle size effect, J. Eur. Ceram. Soc. 25 (2005) 3269–3279.
- [12] T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, J. Saarinen, Eu²⁺ doped calcium aluminate coatings by sol–gel methods, Opt. Mater. 27 (2005) 1537–1540.
- [13] D. Haranath, P. Sharma, H. Chander, A. Ali, N. Bhalla, S.K. Halder, Role of boric acid in synthesis and tailoring the properties of calcium aluminate phosphor, Mater. Chem. Phys. 101 (2007) 163–169.
- [14] A. Nag, T.R.N. Kutty, Role of B₂O₃ on the phase stability and long phosphorescence of SrAl₂O₄:Eu, Dy, J. Alloys Compd. 354 (2003) 221– 231.
- [15] M. Peng, Z. Pei, G. Hong, Q. Su, Study on the reduction of Eu $^{3+}$ \rightarrow Eu $^{2+}$ in Sr₄Al₁₄O₂₅:Eu prepared in air atmosphere, Chem. Phys. Lett. 371 (2003) 1–6
- [16] H.B. Pascoal, W.M. Pontuschka, H. Rechenberg, Luminescence quenching by iron in calcium aluminoborate glasses, J. Non-Cryst. Solids 258 (1999) 92–97.
- [17] F.M. Lea, C.H. Desch, The Chemistry of Cement and Concrete, second ed., Edward Arnold & Co., London, 1956, p. 52.