

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 35 (2009) 679-684

The effect of Fe₂O₃ addition on tialite formation

H.R. Rezaie*, R. Naghizadeh, N. Farrokhnia, S. Arabi, M. sobhani

Department of Engineering Materials, Iran University of Science & Technology, Iran

Received 21 March 2007; received in revised form 10 December 2007; accepted 3 February 2008

Available online 4 June 2008

Abstract

Aluminium titanate (Al_2TiO_5) exhibits interesting properties, such as low thermal expansion, high thermal shock resistance, high refractoriness, and good corrosion resistance. In this research, effect of hematite (Fe_2O_3) addition on the formation temperature of Al_2TiO_5 was studied starting from very fine (micronsized) rutile (TiO_2) and aluminum hydrate ($Al(OH)_3$) powders. Samples with (0, 2.5, 5, 7.5, and 10) wt.% hematite were prepared for comparison. Identification of phases was accomplished using X-ray diffraction. The samples were characterized by simultaneous thermal analysis and microstructural analysis using scanning electron microscopy. The addition of Fe_2O_3 changes the mechanism of tialite formation. The main results are reduction in tialite formation temperature down to 1150 °C, tialite grains growth, and decrease of porosity. © 2008 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Aluminum titanate; Fe₂O₃ additive; Formation

1. Introduction

Aluminum titanate (Al₂TiO₅), generally obtained by a solidstate reaction between Al₂O₃ and TiO₂, has a very low thermal expansion coefficient $(0.2 \times 10^{-6} \text{ to } 10^{-6})$ [1] low thermal conductivity (0.9–1.5 Wm⁻¹ K⁻¹), and a high thermal shock resistance [2,3]. These properties make it suitable to be used most in components of internal combustion engines, as insulating coating, electronical and high temperature electrical part components, molten glass and metal thermometer components. The crystal structure of aluminium titanate is orthorhombic with lattice parameters of: a = 35.91, b = 94.29, and c = 96.36 nm. That thermal expansion coefficient is positive along a and b crystal directions and negative along c axis [4], creates a prominent thermal expansion anisotropy which tends to a very low thermal expansion, beside microcracks, makes it difficult to obtain high strength in room temperature. Microcracks depend strongly on microstructure [5]. Below the critical grain size, during cooling system elastic energy is insufficient for forming microcracks, thus mechanical properties improve conspicuously [1,6], what mentioned as critical grain size depends on sample's thermal history and it is about 1–2 μm [7]. Another problem which represents serious

$$\alpha$$
-Al₂O₃ + TiO₂(rutile) $\rightarrow \beta$ -Al₂TiO₅ (1)

Yet the product of this reaction is a porous body in which the formation reaction is not complete and it can be used as a starting material in later production process [10]. To overcome this problem using monosized oxide powders [11], preparation through organo-metallic precursors [12], and employing additives are common [3]. The molar free energy of Al₂TiO₅ formation can be estimated by a third-law treatment of the available heat capacity data [13,14] and the equilibrium temperature [9], and it has been confirmed experimentally.

$$\Delta G_{\text{Al}_2\text{TiO}_5}^{\circ} = \Delta H^{\circ} - \Delta S^{\circ} T = 17000 - 10.95T$$
$$= -10.95\Delta T (\text{J/mol})$$

limitation to utilization of aluminium titanate is the tendency to decompose to Al_2O_3 and TiO_2 in the range 750–1300 °C. Aluminium titanate exists in two allotropic forms, α and β . The low-temperature phase β -Al $_2TiO_5$, has two temperature ranges of stability, the first from room temperature up to around 750 °C, and the second from 1280 °C up to the inversion temperature at 1820 °C [8]. The high-temperature phase, α -Al $_2TiO_5$, is stable from 1820 °C up to the melting temperature (1860 °C). Conventionally, formation of tialite proceeds according to the following endothermic reaction in temperatures over eutectoid temperature of 1280 °C [8,9].

^{*} Corresponding author. Tel.: +98 2173912856; fax: +98 2177240480. E-mail address: hrezaie@iust.ac.ir (H.R. Rezaie).

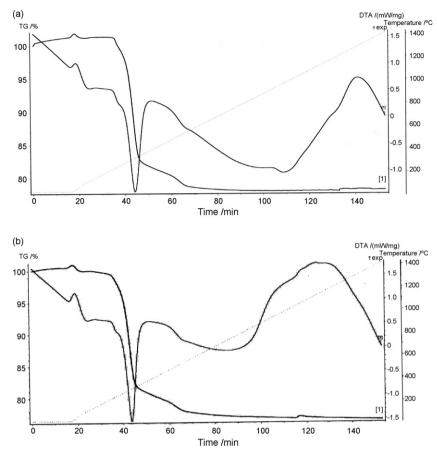


Fig. 1. STA curves of specimens containing (a) 0 and (b) 5 wt.% of Fe₂O₃.

where $\Delta T = T - 1553$ (K) [15]. Tialite formation process was precisely examined by Freudenberg and Mocellin [16,17]. They insisted on the importance of the new phase nucleation and growth in developing the final microstructure in the range 1280–1400 °C. The crystal structure of β -Al₂TiO₅ is of the pseudobrookite type [4,18] with a theoretical density of 3.70 g/cm³ [18].

The density of the starting oxides, α -Al₂O₃ and TiO₂ (rutile) are 3.99 and 4.25 g/cm³ respectively. Therefore, reaction (1) is accompanied by an 11% volume increase bringing problems during sintering [17,19].

2. Experimental procedures

To form tialite, commercially available Al(OH)₃ (DHM, fibrona, India, aluminum hydrate, $d_{50} = 12 \,\mu\text{m}$) and TiO₂ (Hooks Co., China, purity 98.5%) were weighed in appropriate stoichiometery and 2.5, 5, 7.5, and 10 wt.% hematite (Fe₂O₃, Iranian Co., purity 99%) powder was added to the mixture. The compositions were homogenized in an alumina ball-mill using alumina balls as milling media for 1 h. The slurries sieved to 300 mesh, dried and again sieved. After that, the mixture with 0.1 wt.% binder (PVA) (dry base) was pressed uniaxially under pressure of 4 bar to form discs of 15 mm diameter then subjected to drying at 110 °C for 24 h. Powders with 0 and 5 wt.% Fe₂O₃ were characterized by Simultaneous thermal

analysis (NETZSCH STA 409 PC/PG). To investigate the influence of Fe_2O_3 on the formation temperature of Al_2TiO_5 , specimens were heated in air with a heating rate of 5 °C/min at 1150, 1250, 1350, and 1450 °C with soaking time of 5 h and then cooled in the furnace overnight. X-ray analysis (XRD, Jeol 8030 diffractometer) was performed using Cu K α radiation. Weight percent (%wt) of phases available in the specimens were determined by XRD analysis results. The calibration coefficients of every phase were calculated by help of peak intensity of two standard samples, first one containing the $Al(OH)_3$ and TiO_2 powders and the second tialite powder syntesized at 1350 °C and TiO_2 powder according to following equation:

$$\% \text{wt}_{\text{Tialite}} = \frac{A.I_{\text{Tialite}}}{A.I_{\text{Tialite}} + B.I_{\text{Rutile}} + C.I_{\text{Corundum}}}$$
(2)

where I_{Tialite} , I_{Corundum} , and I_{Rutile} are respectively peak intensity of tialite (1 0 1), corundum (1 1 3), and rutile (1 1 0) reflections [20]. A, B and, C represent calibration coefficients of tialite, corundum and rutile, respectively. The microstructure of samples fired at 1250 and 1450 °C was observed by scanning electron microscope (SEM, Cambridge S-360 Model), after mounting and metallographic preparations. The backscattered (BS) mode was especially useful in detecting the presence of unreacted particles, and investigation of phases.

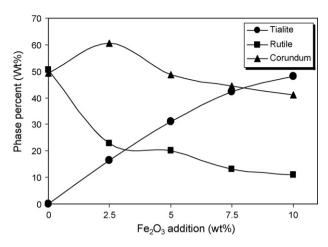


Fig. 2. Phase percentage variation with Fe₂O₃ contents at 1150 °C.

3. Results and discussion

3.1. STA analysis

STA curves of samples containing 0 and 5 wt.% of Fe_2O_3 are shown in Fig. 1(a and b).

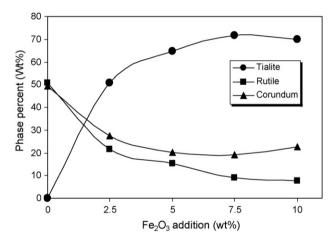


Fig. 3. Phase percentage variation with Fe₂O₃ contents at 1250 °C.

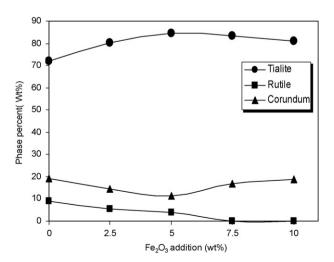


Fig. 4. Phase percentage variation with Fe₂O₃ contents at 1350 °C.

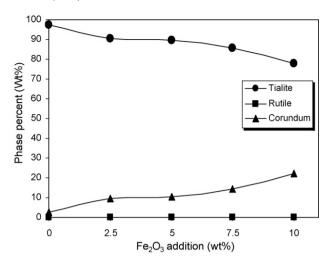


Fig. 5. Phase percentage variation with Fe₂O₃ contents at 1450 °C.

As it is seen in this figure (a and b) with addition of Fe_2O_3 the peak width of tialite formation is increased whereas the formation temperature of tialite decreased to the lower temperatures.

3.2. X-ray diffraction analysis

Weight percent of tialite, curundum and rutile at different temperatures are shown in Figs. 2–5. As can be seen in Fig. 2, the phases in specimens not containing Fe₂O₃, fired at 1150 $^{\circ}$ C are only corundum and rutile, whereas no tialite phase is detected. It indicates that corundum and rutile remain unreacted. By additional of Fe₂O₃ tialite peaks appeared in XRD curves, as mentioned before, formation temperature of tialite produced from solid-state reaction between TiO₂ (rutile)

Table 1 Lattice parameters of tialite with different amounts of Fe_2O_3 additive

Sintering temperature (°C)	Additive (wt.%)	Tialite Lattice constants (nm)		
		a	b	с
1150	0	_	_	_
	2.5	9.480	9.892	3.608
	5	9.472	9.687	3.597
	7.5	9.492	9.646	3.596
	10	9.412	9.684	3.595
1250	0	_	_	_
	2.5	9.452	9.665	3.598
	5	9.354	9.648	3.573
	7.5	9.412	9.668	3.595
	10	9.614	9.737	3.640
1350	0	9.314	9.635	3.569
	2.5	9.276	9.590	3.548
	5	9.412	9.572	3.547
	7.5	9.314	9.652	3.569
	10	9.452	9.681	3.598
1450	0	9.432	9.627	3.593
	2.5	9.432	9.643	3.587
	5	9.492	9.678	3.608
	7.5	9.472	9.687	3.610
	10	9.492	9.694	3.608

and α -Al₂O₃ is over the eutectoid temperature of 1280 °C [4], thus presence of tialite in samples containing additives fired at 1150 °C proves the noticeable effect of Fe₂O₃ in decreasing the formation temperature of tialite. By increasing the weight percent of added Fe₂O₃, the amount of tialite is increased and the amount of rutile is decreased. That is a sign of improvement in tialite formation. Raising the firing temperature up to 1250 °C, only corundum and rutile are apparent phases in specimens not containing Fe₂O₃ (Fig. 3). Again, by addition of

Fe₂O₃, tialite phase is observed at 1250 °C. There is an increase of tialite formation with increasing the amount of Fe₂O₃%. The amount of tialite comparing to that in specimens fired at 1150 °C is significant. Since 1350 °C is over the eutectoid temperature (1280 °C), XRD patterns of samples not containing Fe₂O₃ fired at 1350 °C show tialite as the major phase and, rutile and corundum as minor phases (Fig. 4). By increasing the Fe₂O₃ in samples, the ultimate amount of tialite phase increases while rutile shows the reverse. In samples containing 7.5 and

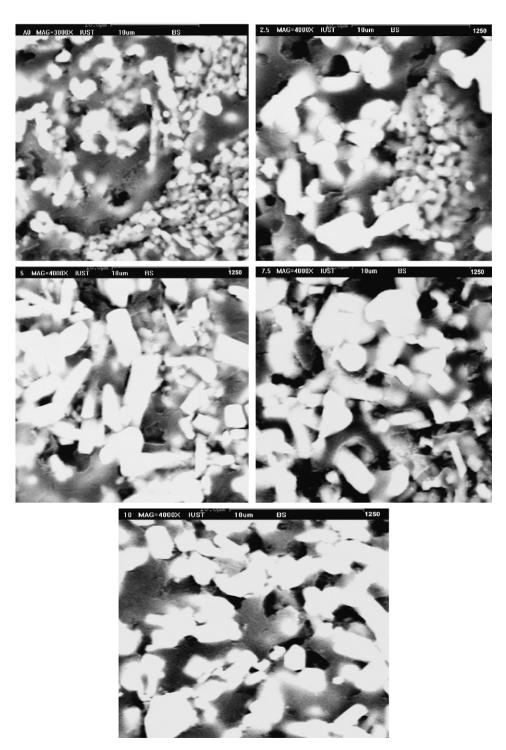


Fig. 6. BS images of specimens fired at 1250 °C for 5 h with different amounts of Fe₂O₃.

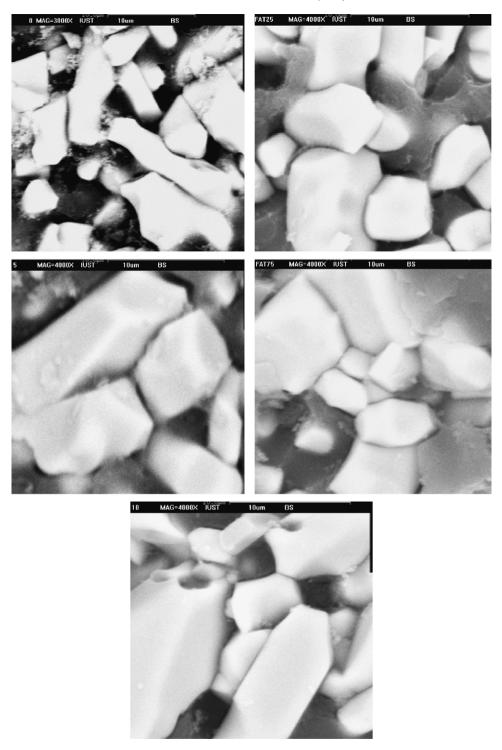


Fig. 7. BS images of specimens fired at 1450 °C for 5 h with different amounts of Fe₂O₃.

 $10 \text{ wt.}\% \text{ Fe}_2\text{O}_3$, the amount of rutile is zero which shows the completion of formation process. Presence of corundum in samples is probably the result of the reaction between Fe $_2\text{O}_3$ and TiO $_2$ to form Fe $_2\text{TiO}_5$ solid solution. Trivial amount of corundum remained in samples not containing additive is considered as lack of stoichiometery in starting powders or impurities entered during ball-milling process.

Fig. 5 shows that tialite formation process completes at $1450\,^{\circ}\text{C}$ and the original phase of all samples is tialite plus

small amount of corundum as a secondary phase. In samples not containing additive the greatest amount of Al_2TiO_5 is represented though it is diminishing as more corundum is remained unreacted and more Fe_2TiO_5 solid—solution is formed while increasing the Fe_2O_3 . Tialite lattice parameters were calculated via XRD results, atomic planes distance and, planes indices in orthorhombic system (Table 1). Changes in lattice parameters in the tialite are evidence of Fe_2O_3 entered tialite structure.

3.3. Microstructural studies

Back scattered (BS) images of samples which fired at 1250 ° C not containing Fe₂O₃, indicate grains with inclusions of unreacted TiO₂ (tiny white spherical particles) and Al₂O₃ (light gray), beside pores of spherical shape (black) plus mounting resins (dark gray). Brittleness of samples while polishing proves the porous structure. By increasing the amounts of Fe₂O₃ tialite grains are improved, therefore unreacted oxide particles are decreased. Backscattered (BS) images were taken from samples fired at 1450 °C includes tialite as a major phase with white micron grains, dispersed gray mount resins and, black colored pores. Samples not containing Fe₂O₃ represent an inhomogeneous structure with flat grain distribution consisting of elongated plate-shaped white tialite grains in an average size of 3–10 µm. By adding Fe₂O₃ grains became bigger in size and grain size distribution became flatter. Also, the amount of porosity decreases in the beginning of the sintering process as inter particle joints are created. An explanation of this matter is that increasing the amount of Fe₂O₃, speeds the action of grain growth and formation of inter particle joints through forming a solid solution with tialite within lower temperatures. Kinetically, by means of the Fe₂O₃ entered the tialite structure and the Al₂O₃ remained from the starting mixture, preferred sites for nucleation are provided, so nucleation occurs easier and tialite grains grow (Figs. 6 and 7).

4. Conclusions

- 1- Addition of 2.5 wt.% Fe₂O₃ to a fine mixture of aluminum hydrate and rutile resulted in decreasing the tialite formation temperature from temperatures over 1280 °C down to 1150 °C.
- 2- The moderately good microstructure of Al₂TiO₅ was improved by addition of Fe₂O₃ up to 7.5% so that tialite grains became larger in size while pores were diminished.

References

 A.M. Segadăes, M.R. Morelli, R.G.A. Kiminami, Combustion synthesis of aluminum titanate, J. Eur. Ceram. Soc. 18 (1998) 771–781.

- [2] H.A.J. Thomas, R. Stevens, Aluminum titanate—a literature review. Part 2. Engineering properties and thermal stability, J. Br. Ceram. Trans. 88 (1989) 84–90.
- [3] G. Tilloca, Thermal stabilization of aluminium titanate and properties of aluminium titanate solid solution, J. Mater. Sci. 26 (1991) 2809–2814.
- [4] B. Morosin, R.W. Lynch, Structure studies on Al₂TiO₅ at room temperature and at 600 °C, Acta Cryst. B28 (1972) 1040–1046.
- [5] J. Jung, A. Feltz, B. Freudenberg, Improved thermal stability of Al-titanate solid solutions, Ceram. Forum Int. Berlin Deutsche Keramische Gesellschaft 70 (6) (1993) 299–301.
- [6] J.J. Cleveland, R.C. Bradt, Grain size/microcracking relations for pseudobrookite oxides, J. Am. Ceram. Soc. 61 (1978) 478–481.
- [7] K. Hamano, Y. Ohya, Z. Nakagawa, Crack propagation resistance of aluminium titanate ceramics, J. Int. High-Tech. Ceram., Elsevier Applied Science Publishers Ltd., Great Britain (1985), 129–137.
- [8] H.A.J. Thomas, R. Stevens, Aluminum titanate—a literature review. Part1. Microcracking phenomena, J. Br. Ceram. Trans. 88 (1989) 144–151.
- [9] E. Kato, K. Dimon, J. Takahashi, Decomposition temperature of β-Al₂TiO₅, J. Am. Ceram. Soc. 63 (1980) 335–356.
- [10] D.S. Perera, Reaction sintered aluminium titanate, J. Mater. Sci. Lett. 8 (1989) 1057–1059.
- [11] H. Okamura, H.L. Bowen, Preparation of alkoxides for the synthesis of ceramics, J. Ceram. Int. 12 (1986) 161–171.
- [12] P.A. Brugger, A. Mocellin, Preparation of composite Al₂O₃-TiO₂ particles from organo-metallic precursors and transformation during heating, J. Mater. Sci. 21 (1989) 4431.
- [13] E.G. King, Low-temperature heat capacities and entropies at 298.16 K of some titanates of aluminum, calcium, lithium and zinc, J. Am. Chem. Soc. 77 (1955) 2150–2152.
- [14] K.R. Bonnickson, High temperature heat contents of some titanates of aluminium, iron and zinc, J. Am. Chem. Soc. 77 (1955) 2152–2154.
- [15] A. Navrotsky, Thermodynamics of formation of some compounds with the pseudobrookite structure and of the Fe₂TiO₅-Ti₃O₅ solid solution series, J. Am. Miner. 60 (1975) 249–256.
- [16] B. Freudenberg, A. Mocellin, Aluminum titanate formation by solid-state reaction of fine Al₂O₃ and TiO₂ powders, J. Am. Ceram. Soc. 70 (1987) 33–38.
- [17] B. Freudenberg, A. Mocellin, Aluminum titanate formation by solid-state reaction of coarse Al_2O_3 and TiO_2 powders, J. Am. Ceram. Soc. 71 (1988) 22–28
- [18] C.E. Holcomb, A.L. Coffey, Calculated X-ray powder diffraction data for beta Al₂TiO₅, J. Am. Ceram. Soc. 56 (4) (1973) 220–221.
- [19] H.W. Hennicke, W. Lingenberg, The formation and decomposition of aluminium titanate. 1. The reaction of formation of aluminium titanate, Ceram. Forum Int. Berlin Deutsche Keramische Gesellschaft 62 (9–10) (1985) 439–445.
- [20] M. Nagano, S. Ngashima, H. Maeda, A. Kato, Sintering behavior of Al_2TiO_5 base ceramics and their thermal properties, J. Ceram. Int. 25 (1999) 681–687.