

**CERAMICS** INTERNATIONAL

Ceramics International 35 (2009) 1289-1292

www.elsevier.com/locate/ceramint

# Short communication

# Hydrothermal synthesis of S-doped TiO<sub>2</sub> nanoparticles and their photocatalytic ability for degradation of methyl orange

Hua Tian a,b, Junfeng Ma a,c,\*, Kang Li d, Jinjun Li b

<sup>a</sup> College of Chemistry and Chemical Engineering, Ocean University of China, Oingdao 266003, China

Received 28 February 2008; received in revised form 7 March 2008; accepted 2 May 2008 Available online 15 July 2008

## Abstract

A simple synthesis route to nanocrystalline S-doped  $TiO_2$  photocatalysts by a hydrothermal method at  $180\,^{\circ}$ C was developed and the photocatalytic activity of the obtained powders for the degradation of methyl orange was studied. The products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The phase composition (anatase/rutile ratio) and the photocatalytic activity of the final materials were found to be markedly influenced by the amount of the incorporated sulphur. On increasing the S-dopant amount, the anatase/rutile ratio and the photocatalytic activity of the as-prepared powders increased.

Crown Copyright © 2008 Published by Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Nanoparticles; TiO2; S-doped; Hydrothermal synthesis

#### 1. Introduction

Since the discovery of photocatalytic water splitting on TiO<sub>2</sub> single-crystal electrodes by Fujishima and Honda in 1972 [1], TiO<sub>2</sub> has been proved to be an excellent catalyst in the photocatalytic degradation of organic pollutants because it is effective, photostable, cheap, non-toxic and easily available [2]. However, most investigations have to be carried out under ultraviolet (UV) light [3–5] since TiO<sub>2</sub> photocatalyst shows relatively high activity and chemical stability under UV light. Therefore, solar light cannot be fully utilized. In the past decades, many efforts have been made for the visible-light sensitization of TiO<sub>2</sub>. Doping is one of the typical approaches to extend the spectral response of a wide band gap semiconductor to visible light, where some metal ions can be used as a dopant [6-8]. However, photocatalytic activity of most of these catalysts decreases even in the UV region because the doped materials suffer from a thermal instability or an increase in the carrier-recombination centers [9]. Recently, some groups reported results on the substitution of non-metal elements such as nitrogen (N) [10], fluorine (F) [11] and sulphur (S) [12] for oxygen (O) in TiO<sub>2</sub>. These anion-doped TiO<sub>2</sub> photocatalysts showed good photocatalytic activity under visible light. Especially, introducing S at the O sites could significantly modify the electronic structures of TiO<sub>2</sub> because S has a larger ionic radius compared with N and F [13].

In previous reports, S-doped  $TiO_2$  photocatalysts were prepared mainly by calcining materials containing titanium at high reaction temperatures [13–14]. More recently, Li et al. [15] reported that sulphur could be doped into titania by treating  $TiO_2$  precursor (xerogel) under supercritical conditions in  $CS_2$ / ethanol fluid at 280 °C. It is well known that the hydrothermal method is a promising approach for the preparation of different classes of inorganic materials in a nanocrystalline state [16], but there have been few reports on the hydrothermal synthesis of S-doped  $TiO_2$  nanoparticles.

In the present work, we report a simple method to synthesize nanocrystalline S-doped TiO<sub>2</sub> photocatalysts, which involve hydrothermal treatment of aqueous solutions of TiCl<sub>4</sub> and thiourea at a relatively low temperature of 180 °C. The obtained products have different morphologies and excellent photocatalytic activities for degradation of methyl orange.

<sup>&</sup>lt;sup>b</sup>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

<sup>&</sup>lt;sup>c</sup> State Key Lab. of Green Building Materials, China Building Materials Academy, Beijing 100024, China

d Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266071, China

<sup>\*</sup> Corresponding author. Tel.: +86 10 51167477; fax: +86 10 65761714. E-mail address: majunfengcbma@yahoo.com.cn (J. Ma).

# 2. Experimental

# 2.1. Preparation for nanocrystalline S-doped $TiO_2$ photocatalysts

TiCl<sub>4</sub> and CS(NH<sub>2</sub>)<sub>2</sub> both analytical grade, were used as starting materials. In a typical synthesis, 0.711 g CS(NH<sub>2</sub>)<sub>2</sub> and 2 ml of TiCl<sub>4</sub> were mixed with 68 ml of distilled water. The mixture was poured into a Teflon-lined stainless autoclave with 100 ml capacity. The autoclave was then sealed and heated up to 180 °C, and kept for 20 h, then cooled to room temperature naturally. Finally, the product was separated by centrifugation, and washed with distilled water and alcohol for several times, then dried at 70 °C for 3 h. The sample was labeled as 0.5% S-TiO<sub>2</sub>, which 0.5% refers to the S/Ti molar ratio. Similarly, 1.0, 1.5% S-TiO<sub>2</sub> and pure TiO<sub>2</sub> samples were also prepared by repeating the above procedure. Pure TiO<sub>2</sub> sample was prepared without adding CS(NH<sub>2</sub>)<sub>2</sub>.

# 2.2. Apparatus

The photocatalytic degradation reactions were performed in a 500 ml Pyrex glass beaker under irradiation of a 400 W high pressure Hg lamp (Shandong Huamei Lighting Co., Ltd.) with a maximum emission at about 365 nm. The methyl orange concentration was analyzed by UV–vis spectroscopy using a 723 spectrophotometer (Shanghai Spectrum Instruments Company). X-ray diffraction (XRD) patterns were obtained using a D/max-rB X-ray diffractometer (Rigaku, Japan). The X-ray source was Cu K $\alpha$  radiation. A transmission electron microscope (JEM-1200 EX TEM) was used to observe the morphology and particle size of the as-prepared photocatalysts.

# 2.3. Photocatalytic experiments

Photocatalytic degradation reaction experiments were carried out by degrading methyl orange in water (its initial concentration was 20 mg/l). The schematic diagram of the photocatalytic reactor is shown in Fig. 1, it consists of two parts: a 500 ml Pyrex glass beaker and a 400 W high pressure Hg lamp that was parallel to the Pyrex glass beaker. The reaction temperature was kept at 25 °C by using a water circulation.

Reaction suspensions were prepared by adding 0.35~g of the as-prepared S-doped  $TiO_2$  powders into 350 ml methyl orange aqueous solution. Prior to irradiation, each suspension was sonicated for 15 min to establish adsorption—desorption equilibrium in a dark. The suspension containing methyl orange and the photocatalyst was then irradiated under the UV light, and the photocatalytic reaction timing started.

At a given time interval, analytical samples were sequentially taken from the reaction suspension, and filtered through multilayer 0.2  $\mu m$  millipore filter. Then the filtrate was analyzed by UV-vis spectroscopy using a 723 spectrophotometer at its maximum absorption wavelength of 464 nm.

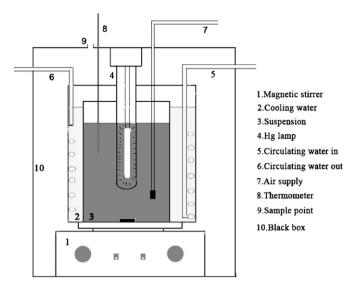



Fig. 1. Schematic diagram of the photocatalytic reactor.

### 3. Results and discussion

Fig. 2 shows XRD patterns of the S-doped  $TiO_2$  photocatalysts hydrothermally synthesized at  $180\,^{\circ}\text{C}$  with different S-doped amount. All of the samples consist of anatase and rutile phases and no other phases can be found. Compared with pure  $TiO_2$ , the 0.5% S- $TiO_2$  mainly shows the reflections corresponding to the rutile phase, and a trace amount of anatase phase. However, on further increasing the amount of the incorporation of S, the anatase phase gradually increases. It means that the ratio of anatase to rutile in the S-doped  $TiO_2$  photocatalysts is strongly affected by the S dopant amount.

Fig. 3 presents TEM micrographs of the S-doped TiO<sub>2</sub> photocatalysts obtained by the hydrothermal method at 180 °C. It is evident that both 0.5% S-TiO<sub>2</sub> and 1.0% S-TiO<sub>2</sub> mainly consist of nanorods while 1.5% S-TiO<sub>2</sub> consists of spherical

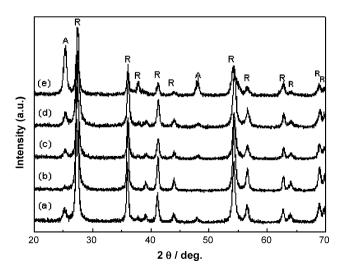
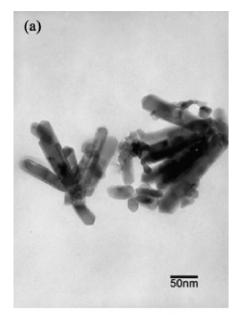




Fig. 2. XRD patterns of the pure  $\rm TiO_2$  and S-doped  $\rm TiO_2$  photocatalysts obtained by the hydrothermal method at 180 °C for 20 h: (a)  $\rm TiO_2$ , (b) 0.5% S-TiO<sub>2</sub>, (c) 1.0% S-TiO<sub>2</sub>, (d) 1.5% S-TiO<sub>2</sub> and (e) 2.0% S-TiO<sub>2</sub>. ((R) rutile; (A) anatase).



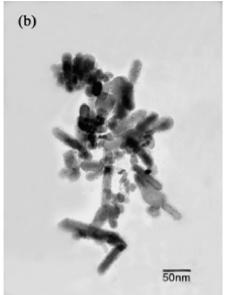





Fig. 3. TEM photographs of the S-doped  $TiO_2$  photocatalysts obtained by the hydrothermal method at 180 °C for 20 h: (a) 0.5% S- $TiO_2$ , (b) 1.0% S- $TiO_2$  and (c) 1.5% S- $TiO_2$ .

nanoparticles. It seems that increasing the incorporated amount of S would modify the morphology of the S-doped  ${\rm TiO_2}$  photocatalysts and reduce their particle sizes. When the amount of S increases from 0.5 mol% to 1.5 mol%, the nanorods of the S-doped  ${\rm TiO_2}$  photocatalysts with a diameter of about 30 nm and length of  $100{\text -}150$  nm can be completely changed to spherical nanoparticles of about 30 nm diameter.

The photocatalytic degradation of methyl orange was investigated by determining the remaining concentration of methyl orange [17] at various time intervals. Fig. 4 shows that the present photocatalytic degradation of methyl orange approximately follows zero order kinetics under UV irradiation [18]. Both 1.0% S-TiO<sub>2</sub> and 1.5% S-TiO<sub>2</sub> samples showed to be more photoactive than undoped TiO<sub>2</sub>, and 1.5% S-TiO<sub>2</sub> exhibits

the best photocatalytic activity, approximately 96% methyl orange being degraded in 40 min. The photocatalytic degradation reaction is a complicated process, which would be influenced by the particle size, morphology, and phase/chemical composition of photocatalysts. A smaller particle size and a larger surface area would facilitate the increase of the photogenerated electrons [19–20], and anatase/rutile mixtures have the high photonic efficiency, like commercial P25 [21], or other samples prepared as thin films [22]. As shown in Figs. 2 and 3, 0.5% S-TiO<sub>2</sub> sample is almost composed of a single phase of rutile and has the larger particle size, so it shows lower photocatalytic activity. When the incorporated amount of S increases, anatase/rutile mixture phases exist and the particle size decreases in the S-doped TiO<sub>2</sub> photocatalysts.

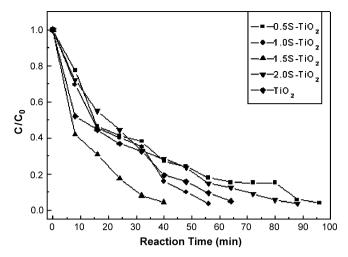



Fig. 4. Methyl orange degradation under UV irradiation (initial concentration of the methyl orange = 20 mg/l and catalyst = 1 g/l).

The combination of decreased particle size with S-dopant effect in 1.5% S-TiO<sub>2</sub> sample results in its higher photocatalytic activity.

Therefore, introducing S into  $TiO_2$  could not only modify the ratio of the anatase to rutile phase, but also control the crystallization and development of the S-doped  $TiO_2$  photocatalysts so as to improve the performance of  $TiO_2$ .

### 4. Conclusions

S-doped  $TiO_2$  photocatalysts at a nanometer scale could be successfully synthesized at  $180\,^{\circ}\text{C}$  by a hydrothermal process. The particle size and morphology, and phase/chemical compositions of the S-doped  $TiO_2$  photocatalysts were strongly dependent on the amount of S incorporation in  $TiO_2$ . 1.5% S- $TiO_2$  sample with a spherical morphology and about 30 nm diameter has the best photocatalytic activity.

#### References

- [1] K. Honda, A. Fujishima, Electrochemical photocatalysis of water at a semiconductor electrode, Nature 238 (1972) 37–38.
- [2] L. Gao, Nano-sized TiO<sub>2</sub> Photocatalyst Materials and its Applications, Chemical Industry Press, 2002, pp. 104.
- [3] M. Kang, S.Y. Lee, C.H. Chung, S.M. Cho, G.Y. Han, B.W. Kim, K.J. Yoon, Characterization of a TiO<sub>2</sub> photocatalyst synthesized by the solvothermal method and its catalytic performance for CHCl<sub>3</sub> decomposition, J. Photochem. Photobiol. A 144 (2001) 185–191.
- [4] I. Mazzarino, P. Piccinini, L. Spinelli, Degradation of organic pollutants in water by photochemical reactors, Catal. Today 48 (1999) 315–321.

- [5] L.F. Zhang, T. Kanki, N. Sano, A. Toyoda, Development of TiO<sub>2</sub> photocatalyst reaction for water purification, Sep. Purif. Technol. 31 (2003) 105–110.
- [6] P.N. Kapoor, S. Uma, S. Rodriguez, K.J. Klabunde, Aerogel processing of MTi<sub>2</sub>O<sub>5</sub> (M = Mg, Mn, Fe, Co, Zn, Sn) compositions using single source precursors: synthesis, characterization and photocatalytic behavior, J. Mol. Catal. A 229 (2005) 145–150.
- [7] A. Fuerte, M.D. Herńandez-Alonso, A.J. Maira, A. Maríýnez-Arias, M. Ferńandez-Garćýa, J.C. Conesa, J. Soria, G. Munuera, Nanosize Ti-W mixed oxides: effect of doping level in the photocatalytic degradation of toluene using sunlight-type excitation, J. Catal. 212 (2002) 1–9.
- [8] B. Sun, E.P. Reddy, G. Smirniotis, Effect of the Cr<sup>6+</sup> concentration in Cr-incorporated TiO<sub>2</sub>-loaded MCM-41 catalysts for visible light photocatalysis, Appl. Catal. B 57 (2005) 139–149.
- [9] W.Y. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO<sub>2</sub>: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. 98 (1994) 13669–13679.
- [10] S. Mozia, M. Tomaszewska, B. Kosowska, B. Grzmil, A.W. Morawski, K. Kalucki, Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation, Appl. Catal. B 55 (2005) 195–200.
- [11] A. Hattori, M. Yamamoto, H. Tada, S. Ito, A promoting effect of NH<sub>4</sub>F addition on the photocatalytic activity of sol–gel TiO<sub>2</sub> films, Chem. Lett. 8 (1998) 707–708.
- [12] T. Ohno, T. Mitsui, M. Matsumura, Photocatalytic activity of S-doped TiO<sub>2</sub> photocatalyst under visible light, Chem. Lett. 32 (2003) 364–365.
- [13] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett. 81 (2002) 454–456.
- [14] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Preparation of S-doped TiO<sub>2</sub> photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A 265 (2004) 115–121.
- [15] H.X. Li, X.Y. Zhang, Y.N. Huo, J. Zhu, Supercritical preparation of a highly active S-doped TiO<sub>2</sub> photocatalyst for methylene blue mineralization, Environ. Sci. Technol. 41 (2007) 4410–4414.
- [16] K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology, William Andrew Publishing, 2001, pp. 875.
- [17] M.L. Zhang, T.C. An, X.H. Hu, C. Wang, G.Y. Sheng, J.M. Fu, Preparation and photocatalytic properties of a nanometer ZnO–SnO<sub>2</sub> coupled oxide, Appl. Catal. A 260 (2004) 215–222.
- [18] J.F. Zhu, W. Zheng, B. He, J.L. Zhang, M. Anpo, Characterization of Fe— TiO<sub>2</sub> photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water, J. Mol. Catal. A 216 (2004) 35–43.
- [19] F. Fresno, J.M. Coronado, D. Tudela, J. Soria, Influence of the structural characteristics of Ti<sub>1-x</sub>Sn<sub>x</sub>O<sub>2</sub> nanoparticles on their photocatalytic activity for the elimination of methylcyclohexane vapors, Appl. Catal. B 55 (2005) 159–167.
- [20] R. Anpo, T. Shima, S. Kodama, Y. Kubokawa, Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates, J. Phys. Chem. 91 (1987) 4305–4310.
- [21] R.I. Bickley, T. González-Carreño, J.S. Lees, L. Palmisano, R.J.D. Tilley, A structural investigation of titanium dioxide photocatalysts, J. Solid State Chem. 92 (1999) 178–190.
- [22] T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii, S. Ito, A patterned TiO<sub>2</sub>(anatase)/TiO<sub>2</sub>(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity, Angew. Chem. Int. Ed. 41 (2002) 2811+.