

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 35 (2009) 2715-2718

Dielectric properties and microstructures of CaSiO₃ ceramics with B₂O₃ addition

Huan-ping Wang, Shi-qing Xu*, Shui-qin Lu, shi-long Zhao, Bao-ling Wang

College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China Received 1 December 2008; received in revised form 16 January 2009; accepted 2 March 2009 Available online 27 March 2009

Abstract

The effects of B_2O_3 additives on the sintering behavior, microstructure and dielectric properties of $CaSiO_3$ ceramics have been investigated. The B_2O_3 addition resulted in the emergence of $CaO-B_2O_3-SiO_2$ glass phase, which was advantageous to lower the synthesis temperature of $CaSiO_3$ crystal phase, and could effectively lower the densification temperature of $CaSiO_3$ ceramic to as low as 1100 °C. The 6 wt% B_2O_3 -doped $CaSiO_3$ ceramic sintered at 1100 °C possessed good dielectric properties: $\varepsilon_r = 6.84$ and $\tan \delta = 6.9 \times 10^{-4}$ (1 MHz). Crown Copyright © 2009 Published by Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: C. Dielectric properties; Microstructure; CaSiO₃ ceramic; B₂O₃ addition

1. Introduction

Low temperature co-fired ceramic (LTCC) technology has been playing an important role in modern wireless communication systems. In order to process ceramic with electrode material, such as 30 Pd/70 Ag (mp 1167 °C) and silver (mp 961 °C), it is required to sinter the dielectrics at temperatures lower than the melting temperature of the co-fired electrode material. Research on the development of co-fired dielectrics with different dielectric constants ε_r has been going for years to fill the need for various RF ranges [1–6]. However, low ε_r material is still the most popularly used one, such as DuPont 951 (ε_r 7.8, $Q \times f$ 700 GHz at 3 GHz, τ_f 8 ppm/°C), since it provides fast transmission in communication systems [7,8].

CaSiO₃ ceramic was proved as a low-permittivity dielectric ceramic system and possessing good dielectric properties: $\varepsilon_r = 5$, $\tan \delta = (1.0-3.0) \times 10^{-4}$ [9]. However, the sintering temperature range of pure CaSiO₃ was very narrow and it was difficult to obtain dense CaSiO₃ ceramics materials by the traditional solid-state preparation process [10]. The synthesis and microwave dielectric properties of CaSiO₃ nanopowder prepared by sol–gel method have been investigated, and it was

In order to improve the sintering characteristic, the study on the synthesis of CaO–B₂O₃–SiO₂ (CBS) glass-ceramics and decreasing sintering temperature with aids have been investigated. Zhu et al. found that the optimal sintering temperature for CaO–B₂O₃–SiO₂ glass-ceramic is 820 °C for 15 min, and the glass-ceramic possesses excellent dielectric properties: $\varepsilon_{\rm r}=6.5$, $\tan\delta<2\times10^{-3}$ at 10 MHz with the major phases are CaSiO₃, CaB₂O₄ and SiO₂ [12]. Chang and co-workers demonstrated that the dielectric properties of the CBS system which comprised of CaSiO₃, Ca₆Si₄O₃ and CaB₂O₄ are: $\varepsilon_{\rm r}=5.1$, $\tan\delta=0.0013$ (1 GHz) [13,14]. Cai et al. reported that the excessive SiO₂ and clay can reduce the sintering temperature (1170–1230 °C) of CaSiO₃, and the dielectric properties are: $\varepsilon_{\rm r}=7.0$ –9.0, $\tan\delta=(1.0$ –5.0) \times 10⁻⁴ [9].

In this work, B₂O₃ was used as the sintering aid to lower the sintering temperature of CaSiO₃ ceramic. The resultant dielectric properties were analyzed based upon the densification, the X-ray diffraction patterns and the microstructures of the ceramics.

2. Experimental procedure

Specimen powders were prepared by a conventional solidstate method. High-purity oxide powders (>99.5%): CaCO₃,

also difficult to obtain dense CaSiO₃ ceramics by sintering the CaSiO₃ nanopowders at 1280–1320 °C [11].

^{*} Corresponding author. Tel.: +86 571 86835781; fax: +86 571 28889527. E-mail address: sxucjlu@hotmail.com (S.-q. Xu).

 SiO_2 and B_2O_3 were used as raw materials. The powders were weighed according to the composition of $CaSiO_3$, and ground in ethanol for 24 h in a balling mill with agate balls. Prepared powders were dried and calcined at $1100-1200\,^{\circ}C$ for 2 h in air. The powders calcined at $1200\,^{\circ}C$ were mixed as desired composition of $CaSiO_3$ with 0.5-8 wt% B_2O_3 additions and remilled for 24 h. The fine powder together with the organic binder (5 wt% PVA) was pressed into pellets with dimensions of 15 mm in diameter and 5 mm in thickness. These pellets were sintered at temperatures of $1000-1200\,^{\circ}C$ for 2 h in air with the heating rate of $5\,^{\circ}C/min$.

The crystalline phases of calcined powders and sintered ceramics were identified by X-ray diffraction pattern (XRD, ARL XTRA, Cu K_{α}). The microstructure observation of the sintered ceramics was performed by means of scanning electron microscopy (SEM, JSM-5601). The bulk densities of the sintered pellets were measured by the Archimedes method. The dielectric constant (ε_r) and dielectric loss ($\tan \delta$) at room temperature were determined from capacitance measurements by an LCR meter (HEWLETT PACKARD 4278A) at 1 MHz, and the electric voltage value was 1 V. The dielectric constant was calculated from a parallel-plate capacitor equation, e.g., $\varepsilon_r = Cd/\varepsilon_0 A$, where C was the capacitance of the specimens, d and A were, respectively, the thickness and the area of the electrode, and ε_0 was the dielectric permittivity of vacuum (8.854 \times 10⁻¹² F/m). Silver paste was used for the electrodes.

3. Results and discussion

Fig. 1 shows the X-ray diffraction patterns of $CaCO_3$ – SiO_2 powders calcined at different temperatures. For the sample calcined at $1100~^{\circ}C$, the SiO_2 phase was predominant with a great deal of $CaSiO_3$ phase. As the calcination temperature was raised to $1200~^{\circ}C$, the $CaSiO_3$ phase became the main phase accompanied with a little SiO_2 phase.

The X-ray diffraction patterns of $CaSiO_3$ ceramics sintered at 1100 °C with different B_2O_3 additions are shown in Fig. 2. With 0.5 wt% B_2O_3 addition, the single crystal phase of $CaSiO_3$

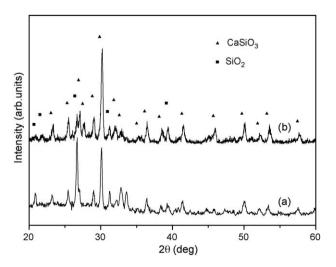


Fig. 1. X-ray diffraction patterns of CaCO_3–SiO_2 powders calcined at (a) 1100 $^{\circ}C$ and (b) 1200 $^{\circ}C$.

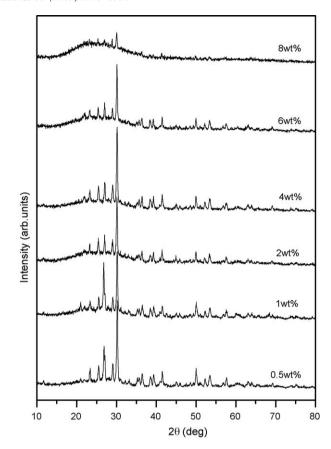


Fig. 2. X-ray diffraction patterns of CaSiO_3 ceramics sintered at 1100 $^{\circ}C$ with different B_2O_3 additions.

was obtained, and no second phase was observed, which indicated that the addition of B_2O_3 could lower the synthesis temperature of $CaSiO_3$ crystal phase. Moreover, it is clear that the diffraction peaks of $CaSiO_3$ were weakened and the amorphous phase was increased with the B_2O_3 content. The results showed that the B_2O_3 addition resulted in the emergence of $CaO-B_2O_3-SiO_2$ glass phase, which was advantageous to lower the synthesis temperature of $CaSiO_3$ crystal phase.

The density of B₂O₃-doped CaSiO₃ ceramics at different sintering temperatures is shown in Fig. 3. With increasing sintering temperature, the apparent density was found to increase to a maximum value, and higher B₂O₃ content shifts the obtainable maximum density to a lower temperature. The bulk densities of CaSiO₃ ceramics sintered at 1100 °C with 2.78 g cm^{-3} , 2.85 g cm^{-3} and 2.82 g cm^{-3} , respectively. The optimal sintering temperatures of CaSiO₃ ceramics with 0.5 wt%, 1-2 wt%, 4 wt%, 6 wt% and 8 wt% B_2O_3 additions were 1200-1250 °C, 1150-1200 °C, 1150 °C, 1100 °C and 1100-1150 °C, separately. The decrease of sintering temperature with the increase of B₂O₃ addition was due to the augment of CaO-B2O3-SiO2 glass phase, which would transform into liquid phase and promote the sintering process. As it is obvious, the CaSiO₃ ceramic sintered at 1100 °C with 6 wt% B₂O₃ addition reached above 98% of the theoretical density (the

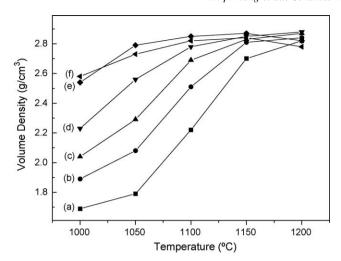


Fig. 3. Dependence of volume density on sintering temperature for $CaSiO_3$ ceramics with (a) 0.5 wt%, (b) 1 wt%, (c) 2 wt%, (d) 4 wt%, (e) 6 wt% and (f) 8 wt% B_2O_3 additions.

theoretical density of CaSiO₃ ceramic is 2.91 g cm⁻³), which could be co-fired with 30 Pd/70 Ag electrode material.

The microstructures of CaSiO₃ ceramics sintered at 1100 °C with different B₂O₃ additions are presented in Fig. 4. From picture

(a), it can be seen that the specimen was not dense and the grain did not grow with 0.5 wt% B₂O₃ addition. Picture (b), picture (c) and picture (d) show that the grain size increased with the increase of B₂O₃ addition due to the liquid phase effect resulted from the addition of B₂O₃, and there were many grains which grow up to 5 μm with 4 wt% B₂O₃ added in. However, the CaSiO₃ ceramics had many pores with 1-4 wt% B₂O₃ addition, which indicated that it is difficult to lower down the sintering temperature of CaSiO₃ ceramics to 1100 °C by adding 1–4 wt% B₂O₃. This was probably due to an insufficient amount of liquid phase (CaO-B₂O₃-SiO₂ glass phase). When the B₂O₃ content increased to 6 wt%, the grains of CaSiO₃ ceramic were in close contact and there was little porosity, which was consistent with the result of bulk densities. However, a low grain growth rate was observed by adding 8 wt% B₂O₃, which was due to the decreasing of CaSiO₃ phase and the augment of CaO-B₂O₃-SiO₂ glass phase.

The dielectric properties (dielectric constant ε_r and dielectric loss $\tan \delta$) of B₂O₃-doped CaSiO₃ ceramics sintered at different temperatures (1050–1200 °C) are illustrated in Figs. 5 and 6. The relationships between dielectric properties and sintering temperature followed similar trend to those between density and sintering temperature, due to a fact that a higher density signifying a lower porosity. The dielectric constant (ε_r) increased

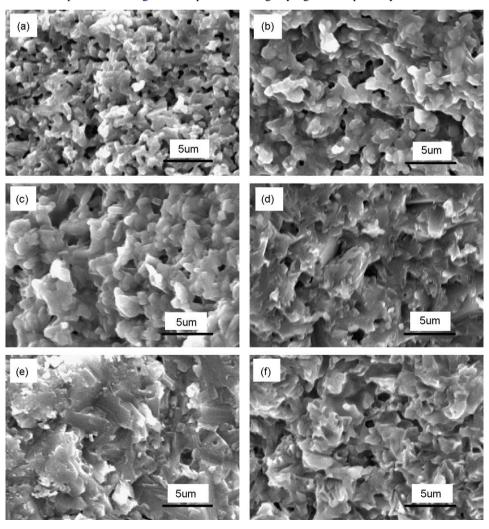


Fig. 4. SEM photographs of CaSiO $_3$ ceramics sintered at 1100 $^{\circ}$ C with (a) 0.5 wt%, (b) 1 wt%, (c) 2 wt%, (d) 4 wt%, (e) 6 wt% and (f) 8 wt% B_2O_3 additions.

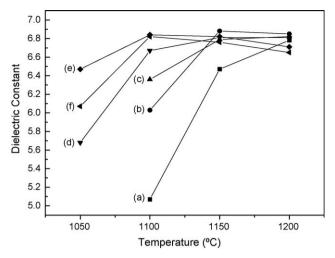


Fig. 5. Dependence of dielectric constant on sintering temperature for $CaSiO_3$ ceramics with (a) 0.5 wt%, (b) 1 wt%, (c) 2 wt%, (d) 4 wt%, (e) 6 wt% and (f) 8 wt% B_2O_3 additions.

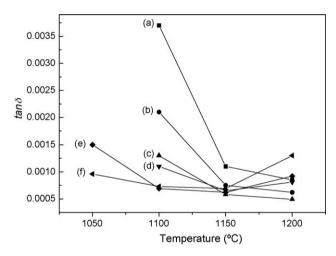


Fig. 6. Dependence of dielectric loss on sintering temperature for $CaSiO_3$ ceramics with (a) 0.5 wt%, (b) 1 wt%, (c) 2 wt%, (d) 4 wt%, (e) 6 wt% and (f) 8 wt% B_2O_3 additions.

and the dielectric loss (tan δ) decreased with the increasing sintering temperature. Sintered at 1100 °C, the CaSiO₃ ceramic with 6 wt% B₂O₃ addition possessed good dielectric properties: $\varepsilon_{\rm r}=6.84$ and tan $\delta=6.9\times10^{-4}$ (1 MHz), which was a better result than the dielectric properties of CaO–B₂O₃–SiO₂ glass-ceramic [12–14]. The dielectric properties of CaSiO₃ ceramic with 8 wt% B₂O₃ addition were: $\varepsilon_{\rm r}=6.76$ and tan $\delta=7.3\times10^{-4}$ (1 MHz). It suggested that the dielectric constant decreased and the dielectric loss increased with the increasing of B₂O₃ addition, although it was advantageous to lower the sintering temperature by adding sufficient B₂O₃. These results also indicated that the dielectric constant of CaO–B₂O₃–SiO₂ glass was lower than which of CaSiO₃ ceramic and the dielectric loss of CaO–B₂O₃–SiO₂ glass was higher than which of CaSiO₃ ceramic.

4. Conclusion

The dielectric properties and microstructures of B₂O₃-doped CaSiO₃ ceramics were investigated. B₂O₃ was not detected in

the ceramics but residual as a CaO–B₂O₃–SiO₂ glass phase. The emergence of CaO–B₂O₃–SiO₂ glass phase, acting as a sintering aid, can effectively lower the synthesis temperature of CaSiO₃ crystal phase and the sintering temperature of CaSiO₃ ceramic. Sintered at 1100 °C, the 6 wt% B₂O₃-doped CaSiO₃ ceramic possesses good dielectric properties: $\varepsilon_r = 6.84$ and tan $\delta = 6.9 \times 10^{-4}$ (1 MHz), which can be co-fired with 30 Pd/70 Ag electrode material.

Acknowledgement

This work is supported by Program for New Century Excellent Talents in University (grant NO NCET-07-0786), the Nature Science Foundation of Zhejiang Province (grant NO R406007) and the Science Technology of Zhejiang Province (grant NO 2008C21054).

References

- [1] C.L. Huang, S.S. Liu, Microwave dielectric properties of a new ceramic system (1-x)(Mg_{0.95}Zn_{0.05})TiO₃-xCaTiO₃ at microwave frequencies, Mater. Lett. 62 (21-22) (2008) 3773-3775.
- [2] J.B. Lim, K.H. Cho, S. Nahm, J.H. Paik, J.H. Kim, Effect of BaCu(B₂O₅) on the sintering temperature and microwave dielectric properties of BaO-Ln₂O₃-TiO₂ (Ln=Sm, Nd) ceramics, Mater. Res. Bull. 41 (10) (2006) 1868–1874.
- [3] D. Zou, Q.L. Zhang, H. Yang, S.C. Li, Low temperature sintering and microwave dielectric properties of Ba₂Ti₃Nb₄O₁₈ ceramics for LTCC applications, J. Eur. Ceram. Soc. 28 (14) (2008) 2777–2782.
- [4] P.V. Bijumon, M.T. Sebastian, Influence of glass additives on the microwave dielectric properties of Ca₅Nb₂TiO₁₂ ceramics, Mat. Sci. Eng. B 123 (2005) 31–40.
- [5] N. Santha, M.T. Sebastian, Low temperature sintering and microwave dielectric properties of Ba₄Sm_{9.33}Ti₁₈O₅₄ ceramics, Mater. Res. Bull. 43 (8–9) (2008) 2278–2284.
- [6] K.W. Kang, H.T. Kim, M. Lanagan, T. Shrout, Low-temperature sintering and microwave dielectric properties of CaTi_{1-x}(Fe_{0.5}Nb_{0.5})_xO₃ ceramics with B₂O₃ addition, Mater. Res. Bull. 41 (7) (2006) 1385–1391.
- [7] C.L. Huang, C.L. Pan, LeeF W.C., Microwave dielectric properties of mixtures of glass-forming oxides Zn-B-Si and dielectric ceramics MgTiO₃-CaTiO₃ for LTCC applications, J. Alloy Compd. 462 (1–2) (2008) L5–L8.
- [8] Q.L. Zhang, H. Yang, J.L. Zou, Low-temperature sintering of (Zn_{0.8} Mg_{0.2})₂SiO₄-TiO₂ ceramics, Mater. Lett. 62 (23) (2008) 3872–3874.
- [9] W. Cai, T. Jiang, X.Q. Tan, Q. Wei, Y. Li, Development of low dielectric constant calcium silicate fired at low temperature, Elec. Compd. Mater. 21 (2002) 16–18.
- [10] R.P.S. Chakradhar, B.M. Nagabhushana, G.T. Chandrappa, K.P. Ramesh, J.L. Rao, Solution combustion derived nanocrystalline macroporous wollastonite ceramics, Mater. Chem. Phys. 95 (2006) 169– 175.
- [11] H.P. Wang, Q.L. Zhang, H. Yang, H.P. Sun, Synthesis and microwave dielectric properties of CaSiO₃ nanopowder by the sol-gel process, Ceram. Int. 34 (6) (2008) 1405–1408.
- [12] H.K. Zhu, M. Liu, H.Q. Zhou, L.Q. Li, A.G. Lv, Study on properties of CaO-SiO₂-B₂O₃ system glass-ceramic, Mater. Res. Bull. 42 (6) (2007) 1137–1144
- [13] C.R. Chang, J.H. Jean, Crystallization kinetics and mechanism of low-dielectric, low-temperature, cofirable CaO-B₂O₃-SiO₂ glass-ceramics, J. Am. Ceram. Soc. 82 (1999) 1725–1732.
- [14] S.H. Wang, H.P. Zhou, L. Qiao, A ceramic for the high frequency multilayer chip inductor, Mater. Mech. Eng. 27 (2003) 17–20.