

CERAMICSINTERNATIONAL

Ceramics International 35 (2009) 3475-3478

www.elsevier.com/locate/ceramint

Short communication

Sintering mechanism and dielectric properties of LiTaO₃ matrix composites with the addition of Al₂O₃ particles

Youfeng Zhang a,b, Dechang Jia a,*, Yu Zhou a, Qingchang Meng a, Yangai Liu c, Hua Ke a

^a Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001, China
^b School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
^c School of Materials Science and Engineering, China University of Geosciences, Beijing 100083, China
Received 14 February 2008; received in revised form 21 January 2009; accepted 14 March 2009
Available online 15 April 2009

Abstract

Highly densified Al₂O₃/LiTaO₃ (ALT) ceramic composites were fabricated by hot-pressing in a nitrogen atmosphere. The addition of Al₂O₃ particles could significantly improve the densification of LiTaO₃. Sintering mechanism of the LiTaO₃ ceramic incorporated with Al₂O₃ particles is proposed. Dielectric constant of 5 vol.% Al₂O₃/LiTaO₃ (5ALT) composite ceramic was slightly increased in the range from 30 kHz to 10^6 Hz, but the dielectric loss was lowered in the whole range from 10^3 Hz to 10^6 Hz. Piezoelectric constant (d_{33}) of the 5ALT ceramic composite is about 50% of that of LiTaO₃ single crystal.

© 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Sintering; A. Hot pressing; B. Interfaces; D. Al₂O₃; LiTaO₃

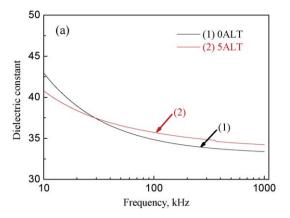
1. Introduction

Lithium metatantalate (LiTaO₃) has various applications due to its excellent pyroelectric, piezoelectric and electrooptic properties [1,2]. Many studies were concentrated on the growth and properties of LiTaO₃ single crystal, but the sintering behavior, microstructure, and properties of LiTaO3 ceramic matrix composites were rarely reported [3]. LiTaO₃ is difficult to be sintered because of volatilization of Li₂O at high temperature (>1300 °C). In previous studies, multifarious solid solution systems were proposed, such as (1 - x)LiTaO₃xCaTiO₃ [3], Mg-doped LiTaO₃ [4] and Li_(1-x)Ag_xTaO₃ [5]. Densification of LiTaO₃ can be improved by addition of oxide or fluoride, but the relative densities of the sintered composites were still very low [6-9]. Our research group proposed a new Al₂O₃ ceramic matrix composite with the addition of LiTaO₃ particles. High densities of the Al₂O₃ ceramic matrix composites (CMCs) were obtained and LiTaO₃ phase was found to be compatible with Al₂O₃ during the sintering process [10]. In our previous study, Al₂O₃ particles were added to LiTaO₃ ceramic matrix in order to improve the densification and mechanical properties of LiTaO₃ ceramic composites and the mechanical properties of the ALT ceramic composites were investigated [11], but further investigations on sintering mechanism and dielectric properties of the LiTaO₃ ceramic composites with addition Al_2O_3 are needed. In this paper, therefore, the sintering mechanism of LiTaO₃ ceramics in the presence of Al_2O_3 and the dielectric properties of the ALT ceramic composite will be reported.

2. Experimental

Commercially available Al₂O₃ powder (High Tech Ceramic Institute, Beijing, China) and LiTaO₃ powder (Dongfang Tantalum Joint Stock Limited Company, Ningxia, China) were used as starting powders. The volume fraction of Al₂O₃ in LiTaO₃ matrix is 5%. Al₂O₃ and LiTaO₃ powders were weighed, then mixed by wet ball milling for 24 h with Al₂O₃ balls. Ethanol was used as a medium for the ball milling. The slurry was stirred and dried slowly to remove the ethanol. The pure LiTaO₃ ceramic and Al₂O₃/LiTaO₃ (ALT) composite ceramics were hot-pressed at 1300 °C for 0.5 h under a pressure of 25 MPa in a nitrogen atmosphere. Samples for scanning transmission electron microscopy (STEM) and HREM observations were cut and then polished to a thickness of less 50 μm

^{*} Corresponding author. Tel.: +86 0451 86418792; fax: +86 0451 86414291. E-mail address: dcjia@hit.edu.cn (D. Jia).


using SiC abrasive papers. Ion thinning of the disc samples was performed by argon ion thinning with an incident angle of 10° until perforation occurred. Microstructural observations were carried out using a JEM-2010F type HREM at 200 kV. The ALT composite ceramic samples were ground into specimens of 12 mm in diameter and <1 mm in thickness. The two opposing surfaces of samples were sprayed with Au electrodes. Dielectric property measurements were carried out on an automated system with LCR meter (Agilent4294A for frequency dependence). Frequency dependences of dielectric constant and dielectric loss were measured pseudo-continuously at room temperature from 40 Hz to 10^6 Hz. Piezoelectric constant (d_{33}) was measured by a d_{33} meter (ZJ-3A) made by the heat treated at $1000~^{\circ}$ C for 3 h to ensure the electrodes well contact with the surfaces of the specimens.

3. Results and discussion

Highly densified ALT ceramic matrix composites were fabricated by hot-press sintering in a nitrogen atmosphere. Relative density the ALT composite can be as high as 99.5% when it was hot-pressed at 1300 °C under a pressure of 25 MPa [11], but the relative density of the pure LiTaO₃ ceramic was only 91.5%. The mechanical properties of pure LiTaO₃ ceramic and LiTaO₃ matrix composite added Al₂O₃ particles were investigated in our previously study. In comparison of the pure LiTaO₃ ceramic, the flexural strength and the fracture toughness of 5 vol.% Al₂O₃/LiTaO₃ (5ALT) ceramic composite increased up to 118.5 MPa and 2.36 MPa m^{1/2}, respectively, which were 4 and 5 times larger than that of pure LiTaO₃ ceramic [11].

Fig. 1 shows dielectric constants and dielectric loss (tan δ) of the sintered pure LiTaO₃ ceramic and 5ALT ceramics composite as a function of frequency. The dielectric constant and dielectric loss of the samples were measured at frequencies from 40 Hz to 10⁶ Hz. The values of dielectric constant for pure LiTaO₃ ceramic and 5ALT ceramic composite are 33 and 35, respectively. The dielectric loss values are in the range of 0.021-0.073 for pure LiTaO₃ ceramic and 0.018-0.076 for 5ALT ceramic composite. The dielectric constant of LiTaO₃ ceramics was slightly increased with the addition of Al₂O₃ but the dielectric loss was lowered. The electroded ceramics samples were polarized before measurements. The applied electrical field was perpendicular to the circular faces of the pellet. The value of piezoelectric constant (d_{33}) of 5ALT ceramic composite is 5×10^{-12} C/N. This value represents about 50% of the d_{33} value previously measured for a LiTaO₃ single crystal and enhances approximately 20–30% compared with results from other researchers [7].

To investigate the sintering mechanism of the ALT ceramic composite, the interface microstructure between LiTaO $_3$ and Al $_2$ O $_3$ in the composite ceramic was investigated. Fig. 2 showed a typical HREM micrograph of interface between LiTaO $_3$ and Al $_2$ O $_3$. The LiTaO $_3$ grains were well bonded with the Al $_2$ O $_3$ grains and the interface between LiTaO $_3$ grains and Al $_2$ O $_3$ grains was clear and clean. It can be seen from Fig. 2 that ($\bar{1}$ 12)_{LiTaO $_3$} plane is parallel to that of (013)_{Al $_2$ O $_3$}, and the

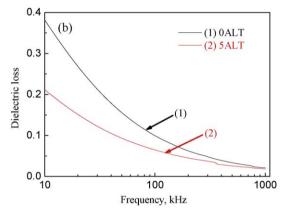


Fig. 1. Dielectric constant and dielectric loss ($\tan \delta$) of the ALT composites at room temperature as a function of frequency: (a) dielectric constant; (b) dielectric loss.

schematic of crystal lattice constant of $(0\,1\,3)_{Al_2O_3}$ and $(\bar{1}\,1\,2)_{LiTaO_3}$ proposed is shown in Fig. 3. The matching of the two planes is very good, calculated in the $(\bar{1}\,1\,2)_{LiTaO_3}$ plane come forward with $(0\,1\,3)_{Al_2O_3}$ lattice mismatch rate of only about 1%. Moreover, many interfaces with lower lattice mismatching rate have been observed in this composite system.

Fig. 4 shows that STEM micrograph at interface and X-ray line scanning map of Al, Ta, O. As it indicated, interdiffusion of Al and Ta elements took place at the Al₂O₃/LiTaO₃ boundary and Ta element content is close to zero across the diffuse area, but some Al element still exist in LiTaO₃ grain across interface area. This indicates that small content of Al atoms may diffused into LiTaO₃ grains. Since the ionic radius of O^{2-} (r = 0.140 nm) is much larger than that of Ta^{5+} (r = 0.064 nm) or Li^{+} (r = 0.074 nm), it seems that the rate-controlling step during sintering process of LiTaO₃ is the diffusion of oxygen. The ionic radius of $A1^{3+}$ (r = 0.057 nm) is a little smaller than that of Ta^{5+} , suggesting that Al3+ ions could substitute for Ta5+ or diffused into octahedron interstice in the LiTaO3 lattice, thereby producing oxygen vacancies which facilitate the diffusion of oxygen in LiTaO₃ and its rapid densification. In addition, according to results of Shimada et al. [9], LiTaO₃ is difficult to be sintered because of volatilization of Li₂O at the required high sintering temperature (>1300 °C), and the densification of pure LiTaO₃ occurs concurrently with grain growth, and prolonged

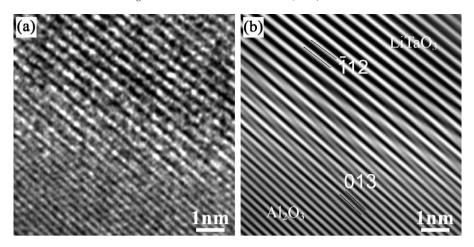


Fig. 2. HREM image (a) and reproduced image by inverse Fourier transformation according to the Fourier transformation pattern (b) of $Al_2O_3/LiTaO_3$ interface in ALT ceramic composite.

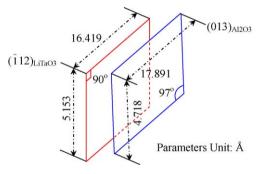


Fig. 3. Schematic of crystal lattice constant of $(0\,1\,3)_{Al_2O_3}$ and $(\bar{1}\,1\,2)_{LiTaO_3}$.

heat treatment for $\geq 120\,\mathrm{min}$ at $1300\,^\circ\mathrm{C}$ results in the development of large grains, resulting from the onset of exaggerated grain growth. According to our previously study, dramatic grain growth is not observed [11]. It seemed that the addition of $\mathrm{Al_2O_3}$ particles could lower the volatilization of $\mathrm{Li_2O}$ as a result of the low interface energy between $\mathrm{Al_2O_3}$ and $\mathrm{LiTaO_3}$ due to their good lattice matching, therefore the sinterability of the ceramics is improved. Moreover, the applied pressure further enhance the densification process thus could

shorten the sintering time, eventually, the grain growth of LiTaO₃ could be prohibited effectively.

To summarize, the addition of Al_2O_3 particles enhanced the sinterability of LiTaO₃, which could be attributed to the lower lattice mismatching rate between Al_2O_3 and LiTaO₃ grains, the substitute or diffusion of Al^{3+} ions.

4. Conclusions

The addition of small amount of Al_2O_3 particles significantly improved the sinterability of LiTaO₃ ceramic thus highly densified ALT ceramic composites were fabricated by hotpressing in a nitrogen atmosphere. Several factors, such as abundant $Al_2O_3/LiTaO_3$ interfaces of lower lattice mismatching rate, substitute or diffusion of Al^{3+} ions at the interfaces, etc. contributed to improving the sinterability of LiTaO₃ composite ceramics. Dielectric loss could be further lowered with the dielectric constant increased slightly during the wide range of frequency from 40 Hz to 10^6 Hz. The piezoelectric constant (d_{33}) of 5ALT ceramic composite is about 50% of that of the LiTaO₃ single crystal and enhances approximately 20-30% compared with results from others.

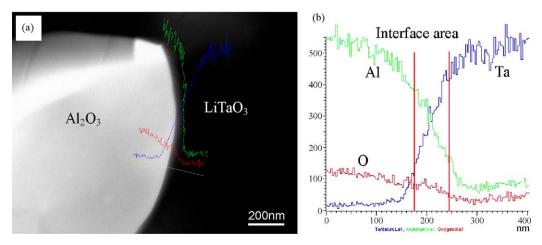


Fig. 4. STEM micrograph (a) and X-ray line scanning map of Ta, Al, O elements (b) of near the Al₂O₃/LiTaO₃ boundary in 5ALT ceramic composite.

Acknowledgements

This project was supported by the Specialized Research Found for Outstanding Excellent Young Teachers of Shanghai of China under grant number of gjd08016, Program for New Century Excellent Talents in University (NCET) of China under Grant number of NCET-04-0327 and Program of Excellent Team in Harbin Institute of Technology of China.

References

- J. Ravez, G.T. Joo, J.P. Bonnet, Ferroelectric properties of Li_{0.8}Mg_{0.2}(-Ta_{0.8}Ti_{0.2})O₃ ceramics, Ferroelectrics 81 (1988) 305–308.
- [2] D.C. Sinclair, A.R. West, Electrical properties of LiTaO₃ single crystal, Physical Review B 39 (1989) 13486–13492.
- [3] N. Bamba, T. Yokouchi, J. Takaoka, B. Elouadi, T. Fukami, Effects of CaTaO₃ on electrical properties in LiTaO₃ ceramics, Ferroelectrics 304 (2004) 135–138.
- [4] A. Huanosta, E. Alvarez, M.E. Villafuerte-Castrejón, A.R. West, Electrical properties of Mg-doped LiTaO₃ ceramics, Materials Research Bulletin 39 (2004) 2229–2240.

- [5] J.L. Peng, L.A. Bursill, Silver ion-exchanged lithium tantalate Li_{1-x}Ag_xTaO₃: high-resolution electron microscopic studies of intergrowth defect structures, Ferroelectrics 77 (1988) 69–80.
- [6] Z.G. Ye, R. Von Der Mühll, J. Ravez, P. Hagenmuller, New oxyfluorides and highly densified ceramics related to LiNbO₃, Journal of Physics and Chemistry of Solids 50 (1989) 809–812.
- [7] Z.G. Ye, R. Von Der Mühll, J. Ravez, P. Hagenmuller, Dielectric, piezoelectric, and pyroelectric studies of LiTaO₃-derived ceramics sintered at 900 °C following the addition of (LiF + MgF₂), Journal of Materials Research 3 (1988) 112–115.
- [8] N. Puyoo-Castings, F. Duboudin, J. Ravez, P. Hagenmuller, LiTaO₃ ceramics obtained by gelation process, Materials Research Bulletin 22 (1987) 261–268.
- [9] S. Shimada, K. Kodaira, T. Matsushita, Sintering LiTaO₃ and KTaO₃ with the aid of manganese oxide, Journal of Materials Science 19 (1984) 1385– 1390.
- [10] Y.G. Liu, D.C. Jia, Y. Zhou, Microstructure and mechanical properties of a lithium tantalate-dispersed-alumina ceramic composite, Ceramics International 28 (2002) 111–114.
- [11] Y.F. Zhang, Y. Zhou, D.C. Jia, H.Y. Li, Q.C. Meng, Microstructure and mechanical properties of Al₂O₃ particle reinforced LiTaO₃ piezoelectric ceramic matrix composites, Materials Science & Engineering A 448 (2007) 330–334.