

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 36 (2010) 1887-1892

Ni₄Nb₂O₉ ceramics prepared by the reaction-sintering process

Yi-Cheng Liou a,*, Zong-Sian Tsai a, Kuan-Zong Fung b, Chi-Yang Liu b

^a Department of Electronic Engineering, Kun Shan University, 949 Da Wan Rd., Tainan 71003, Taiwan, ROC
 ^b Department of Materials Science and Engineering, National Cheng Kung University, #1 University Road, Tainan 70101, Taiwan, ROC
 Received 8 October 2009; received in revised form 10 February 2010; accepted 19 March 2010
 Available online 28 April 2010

Abstract

Fabrication of Ni₄Nb₂O₉ ceramics via a reaction-sintering process was investigated. A mixture of raw materials was sintered into ceramics by bypassing calcination and subsequent pulverization stages. Ni₄Nb₂O₉ phase appeared at 1300 °C and increased with increasing soak time. Ni₄Nb₂O₉ content was found >96% in 1350 °C/2 h sintering pellets. A density of 5.71 g/cm³ was obtained for pellets sintered at 1350 °C for 2 h. This reaches 96.5% of the theoretical density. As the sintering temperature increased to 1350 °C, an abnormal grain growth occurred and grains >100 μ m could be found. ϵ _r of 15.4–16.9 are found in pellets sintered at 1200–1300 °C. $Q \times f$ increased from 9380 GHz in pellets sintered at 1200 °C to 14,650 GHz in pellets sintered at 1250 °C.

© 2010 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Ni₄Nb₂O₉; Reaction-sintering process

1. Introduction

Dielectric ceramic resonators used at microwave frequencies have been widely investigated due to the fast growth of mobile communication and satellite systems. Microwave dielectric materials are required to have a high relative permittivity (ε_r), high quality factor (Q) and low temperature coefficient of resonant frequency (τ_f). Corundum-type $A_4Nb_2O_9$ (A = Mg, Co, Ni, Mn and Fe) ceramics have been studied for microwave dielectric and magnetic applications. Mg₄Nb₂O₉ has attracted interest due to its low dielectric loss and high dielectric constant [1–7]. Ogawa et al. found Mg₄Nb₂O₉ with dielectric properties: $\varepsilon_{\rm r} = 11, \ Q \times f = 210,000 \ {\rm GHz} \ {\rm and} \ \tau_{\rm f} = -70 \ {\rm ppm/^{\circ}C} \ [5]. \ {\rm With}$ the addition of perovskite CaTiO₃ showing $\varepsilon_{\rm r} \sim 170$, $Q \times f$ \sim 3600 GHz (at 7 GHz) and $\tau_f \sim$ 800 ppm/°C [8], Huang et al. [9] obtained $0.5Mg_4Nb_2O_9$ – $0.5CaTiO_3$ ceramics with $\varepsilon_r \sim 24.8$, $Q \times f \sim 82,000$ GHz (at 9.1 GHz) and $\tau_f \sim -0.3$ ppm/°C. They also reported $0.6 Mg_4 Nb_2 O_9 - 0.4 SrTiO_3$ ceramics with $\varepsilon_r \sim 21$, $Q \times f \sim 112,000$ GHz (at 9.7 GHz) and $\tau_f \sim 1.6$ ppm/°C [10] as perovskite SrTiO₃ ($\varepsilon_{\rm r}$ ~205, $Q \times f$ ~4200 GHz and $\tau_{\rm f}$ \sim 1700 ppm/°C) [11] was added into Mg₄Nb₂O₉. Ogawa et al. obtained $Co_4Nb_2O_9$ with dielectric properties: $\varepsilon_r = 16$,

 $Q \times f = 5000 \text{ GHz}$ and $\tau_f = -10 \text{ ppm/}^{\circ}\text{C}$ [5]. Yoshida et al. found that only solid solutions $Mg_{4-x}Ni_xNb_2O_9$ (x = 0-2) based on the Mg₄Nb₂O₉ structure type could be formed in the $Mg_4Nb_2O_9-Ni_4Nb_2O_9$ system. $Q \times f$ values decrease from 192,268 to 28,440 GHz with increasing nickel content [3]. Tarakina et al. [12] investigated crystal structure and magnetic properties of complex oxides $Mg_{4-x}Ni_xNb_2O_9$ $(0 \le x \le 4)$. They found two ranges of solid solution in the system Mg₄Nb₂O₉-Ni₄Nb₂O₉. Solid solutions Mg_{4-x}Ni_xNb₂O₉ with a structure based on the corundum-related phase Mg₄Nb₂O₉ are formed at $0 \le x \le 2.75$ and a solid solution $Mg_{4-x}Ni_xNb_2O_9$ with a structure based on the II-Ni₄Nb₂O₉ structure is formed at $2.75 \le x \le 4$. Khamman et al. [13] prepared Ni₄Nb₂O₉ powders using a rapid vibro-milling technique and found minor phases of unreacted NiO and Nb₂O₅ precursors and NiNb₂O₆ phase tend to form together with the Ni₄Nb₂O₉ phase, depending on calcination conditions. Single-phase of corundum Ni₄Nb₂O₉ powders with particle size ranging from \sim 1 to 2 μ m has been obtained by using a calcination temperature of 1250 °C for 2 h or 1300 °C for 0.5 h, with heating/cooling rates of 20 °C/min.

We had used a simple reaction-sintering process for Pb(Mg_{1/3}Nb_{2/3})O₃ (PMN) ceramics few years ago. A mixture of raw materials was sintered into PMN ceramics by bypassing calcination and subsequent pulverization stages. These have been the first successful synthesis of perovskite relaxor ferroelectric ceramics without the calcinations step in the

^{*} Corresponding author. Tel.: +886 6 2050521; fax: +886 6 2050250. E-mail address: ycliou@mail.ksu.edu.tw (Y.-C. Liou).

traditional oxide route involved. PMN ceramics with a high density 8.09 g/cm³ (99.5% of the theoretical value) and high dielectric constant 19,900 (1 kHz) were obtained [14]. This reaction-sintering process had also been used to produce other complex perovskite relaxor ceramics. In recent studies, we also prepared BaTi₄O₉, Ba₅Nb₄O₁₅, Sr₅Nb₄O₁₅, NiNb₂O₆, and Mg₄Nb₂O₉ ceramics using this process [15–18]. Microwave dielectric properties $\varepsilon_r = 20.7$, $Q \times f = 19,800$ GHz, and $\tau_f = -31.9 \text{ ppm/}^{\circ}\text{C}$ were obtained for NiNb₂O₆ ceramics sintered at 1300 °C for 2 h [17]. While in Mg₄Nb₂O₉ prepared via the reaction-sintering process, minor MgNb₂O₆ phase were detected in Mg₄Nb₂O₉ sintered at 1100 and 1150 °C. MgNb₂O₆ phase disappeared at higher sintering temperatures and Mg_{0.652}Nb_{0.598}O_{2.25} phase was detected in Mg₄Nb₂O₉ sintered at 1200 and 1250 °C. Maximum density 4.26 g/cm³ (97.2% of the theoretical density) was obtained for Mg₄Nb₂O₉ pellets sintered at 1300 °C for 6 h. Grain size of 5-8 µm formed in Mg₄Nb₂O₉ pellets sintered at 1150 °C for 2 h. As the sintering temperature increased, an abnormal grain growth occurred and grains $> 100 \mu m$ could be found [18].

Although the corundum-type $A_4Nb_2O_9$ ceramics have been studied by some researchers, however, works of these ceramics via the reaction-sintering process are not readily available. Besides, to our knowledge, no references have been reported about microwave dielectric properties of $Ni_4Nb_2O_9$ ceramics. Therefore, we try to obtain $Ni_4Nb_2O_9$ ceramics by reaction-sintering process in this study. Phase formation, microstructures and properties were investigated.

2. Experimental procedures

All the samples in this study were prepared from reagent-grade oxides: NiO (99.8%, SHOWA, Japan) and Nb₂O₅ (99.8%, High Purity Chemicals, Japan). Ni₄Nb₂O₉ (NN) ceramics were weighted with the ratio NiO/Nb₂O₅ = 4/1 and milled in deionized water with zirconia balls for 12 h. After the slurry was dried and pulverized with 10 wt% poly(vinyl alcohol) (PVA) (SHOWA, Japan), the as-obtained powder was pressed into pellets with a diameter of 12 mm and thickness of 1–2 mm (6–7 mm thick for microwave properties measurement). The pellets were then heated at a rate of 10 °C/min and sintered in a covered alumina crucible at temperatures ranging from 1170 to 1350 °C for 2–6 h in air.

The sintered pellets were analyzed by X-ray diffraction (XRD) to identify the reflections of various phases. Microstructures were analyzed by scanning electron microscopy (SEM). The density of the sintered pellets was measured using the Archimedes method. The dielectric constant (ε_r) at microwave frequencies was calculated on the basis of the size of the samples and the frequency of the TE_{0 1 1} mode using the Hakki–Coleman dielectric resonator method [19]. An Agilent 8720ES network analyzer was used to measure the frequencies.

3. Results and discussion

The XRD profiles of the NN ceramics sintered at 1170-1350 °C and the starting materials NiO and Nb₂O₅ are

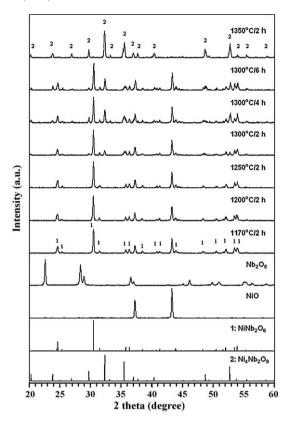


Fig. 1. XRD patterns of NN ceramics sintered at 1170-1350 °C and the starting materials NiO and Nb₂O₅. 1: NiNb₂O₆ (ICDD PDF #00-032-0694) and 2: Ni₄Nb₂O₉ (ICDD PDF #01-077-2409).

illustrated in Fig. 1. The reflections of NiNb₂O₆, matching with those in ICDD PDF #00-032-0694, were identified as the major phase in pellets sintered at lower temperatures. Some remained NiO could be found in these pellets. Ni₄Nb₂O₉ phase appeared at 1300 °C sintering pellets and increased obviously after sintering at 1350 °C. Therefore, the formation of NiNb₂O₆ phase is easier than the Ni₄Nb₂O₉ phase in the mixture of NiO and Nb₂O₅ during the heating up period. Quantitative ratios among NiNb₂O₆, Ni₄Nb₂O₉, and NiO phases in pellets sintered at various temperatures are listed in Table 1. NiNb₂O₆ content reached 61–64% in 1170–1250 °C/2 h sintering pellets. It decreased to \sim 56% at 1300 °C/2 h sintering and 48% at 1300 °C/4–6 h sintering. Ni₄Nb₂O₉ content was found >96%

Table 1 Quantitative ratios among NiNb₂O₆, Ni₄Nb₂O₉, and NiO phases in pellets sintered at various temperatures.

Sintering temperature	$NiNb_2O_6$	$Ni_4Nb_2O_9$	NiO
1170 °C/2 h	61.65%	0.24%	38.11%
1200 °C/2 h	64.12%	0.57%	35.31%
1250 °C/2 h	62.43%	0.27%	37.30%
1300 °C/2 h	55.98%	10.43%	33.59%
1300 °C/4 h	48.06%	22.69%	29.25%
1300 °C/6 h	48.00%	20.57%	31.43%
1350 °C/2 h	1.54%	96.04%	2.42%

% of NiNb₂O₆ = $I_1/(I_1 + I_2 + I_3) \times 100\%$; % of Ni₄Nb₂O₉ = $I_2/(I_1 + I_2 + I_3) \times 100\%$; % of NiO = $I_3/(I_1 + I_2 + I_3) \times 100\%$; I_1 = intensity of the major peak of NiNb₂O₆ at 2θ around 30.44° ; I_2 = intensity of the major peak of Ni₄Nb₂O₉ at 2θ around 32.3° ; I_3 = intensity of the major peak of NiO at 2θ around 43.3° .

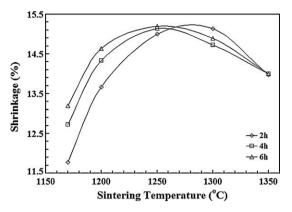


Fig. 2. Shrinkage percentages of NN ceramics sintered at various temperatures for 2-6 h.

in $1350\,^{\circ}\text{C}/2\,\text{h}$ sintering pellets. Ehrenberg et al. [20] obtained Ni₄Nb₂O₉ with trifling impurities NiO and NiNb₂O₆ after heating the mixture of NiO and Nb₂O₅ in flowing oxygen at $1450\,^{\circ}\text{C}$ for 48 h. In the calcined Ni₄Nb₂O₉ powder, Khamman et al. found that NiNb₂O₆ phase appeared at 600 $^{\circ}\text{C}$ and became the predominant phase in the powder calcined above 800 $^{\circ}\text{C}$, mixing with NiO and Nb₂O₅ phases. A single-phase Ni₄Nb₂O₉ powder formed after calcining at $1250\,^{\circ}\text{C}$ and $1300\,^{\circ}\text{C}$ [13]. From the discussion above, the reaction-sintering process is proven a simple and effective process to obtain NN ceramics. In our study of Mg₄Nb₂O₉ ceramics prepared by a reaction-sintering process, Mg₄Nb₂O₉ were identified as the major phase

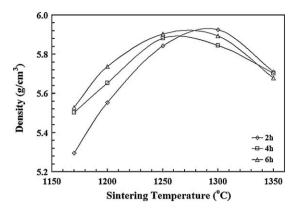


Fig. 3. Density of NN ceramics sintered at various temperatures for 2-6 h.

and some weak peaks corresponding to MgNb₂O₆ phase were detected in pellets sintered at 1100 and 1150 °C. These peaks disappeared in pellets sintered at higher temperatures and some weak peaks corresponding to Mg_{0.652}Nb_{0.598}O_{2.25} were detected in pellets sintered at 1200 and 1250 °C [18]. This implies that formation of Ni₄Nb₂O₉ phase is more difficult than Mg₄Nb₂O₉ phase when the reaction-sintering process was used.

Fig. 2 illustrates the linear shrinkage of the NN ceramics sintered at various temperatures. Shrinkage values 11.8-15.2% are found at 1170-1350 °C. In our study of NiNb₂O₆ ceramics prepared by a reaction-sintering process, a shrinkage value 16.7% was found in pellets sintered at 1200 °C/2 h [17].

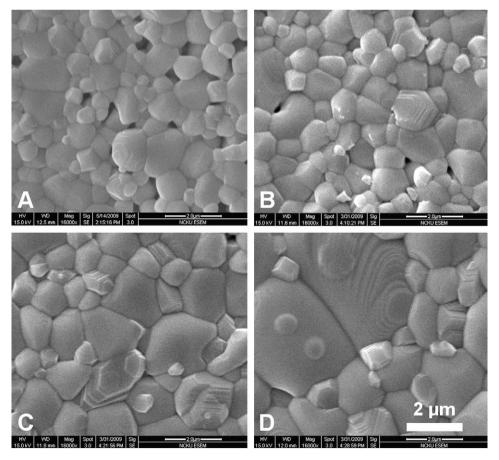


Fig. 4. SEM photographs of as-fired NN ceramics sintered at (A) 1170 °C, (B) 1200 °C, (C) 1250 °C, and (D) 1300 °C for 2 h.

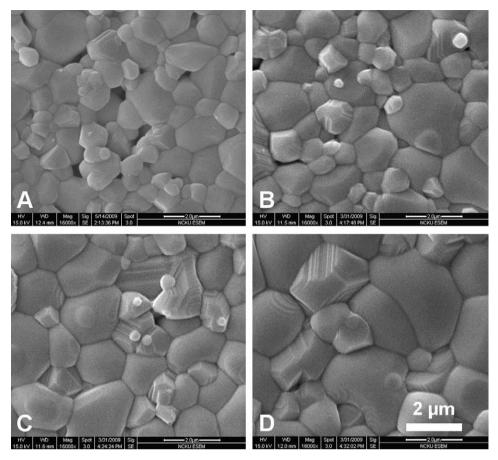
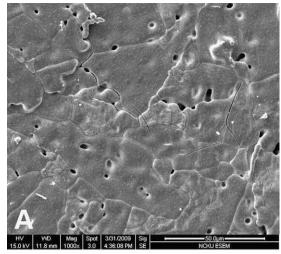
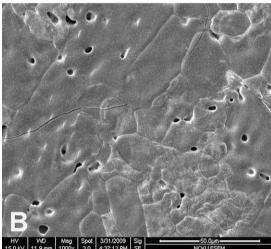


Fig. 5. SEM photographs of as-fired NN ceramics sintered at (A) $1170\,^{\circ}$ C, (B) $1200\,^{\circ}$ C, (C) $1250\,^{\circ}$ C, and (D) $1300\,^{\circ}$ C for $4\,\mathrm{h}$.

A similar trend was observed for the density values as shown in Fig. 3. A density of 5.71 g/cm³ was obtained for pellets sintered at 1350 °C for 2 h. This reaches 96.5% of the theoretical density 5.915 g/cm³ of NN ceramic. Yoshida et al. found 90.3–93.7% of the theoretical density in $Mg_{4-x}Ni_xNb_2O_9$ (x=0.5-2) after calcining at 1000 °C for 20 h and sintering at 1200–1500 °C for 10 h [3]. Therefore, the reaction-sintering process is proven a simple and effective process to obtain dense NN ceramics. In NiNb₂O₆ ceramics prepared by a reaction-sintering process, maximum density 5.62 g/cm³ (99.8% of theoretical value) was

Table 2
Grain size of NN pellet sintered at various temperatures and soak times.


Sintering temperature	2 h (μm)	4 h (μm)	
1170 °C	0.97	1.36	
1200 °C	1.33	1.64	
1250 °C	1.91	2.03	
1300 °C	2.64	2.84	


found at 1300 °C/2 h sintering [17]. In our study of $Mg_4Nb_2O_9$ ceramics prepared by a reaction-sintering process, pellets with 97.2% of the theoretical density were obtained after sintering at 1300 °C for 6 h [18]. This implies that densification in $Ni_4Nb_2O_9$ ceramic is more difficult than $NiNb_2O_6$ and $Mg_4Nb_2O_9$ when the reaction-sintering process was used.

SEM photographs of as-fired NN ceramics sintered at 1170–1300 °C for 2 h are presented in Fig. 4. Porous pellet with grains $<2~\mu m$ is observed for 1170 °C sintering. Pores decreased and grain size increased as sintering temperature increased. Grains $>6~\mu m$ could be found in pellets sintered at 1300 °C. This shows a good agreement with the results of density in Fig. 3. In NiNb₂O₆ via reaction-sintering process, grains less than 2 μm were observed in pellets sintered at 1250 °C/2 h and still $<6~\mu m$ in pellets sintered at 1350 °C/2 h [17] indicating the grain growth in NN ceramics is easier than NiNb₂O₆ even though the formation and densification are more difficult. While in Mg₄Nb₂O₉ via reaction-sintering

Table 3 ε_r and $Q \times f$ of NN ceramics sintered at various temperatures for 2 h.

	Sintering temperature				
	1200 °C	1250 °C	1300 °C	1350 °C	
$\overline{\varepsilon_{\mathrm{r}}}$	15.4	16.9	15.9	13.2	
$Q \times f$	9380 GHz (at 9.7 GHz)	14,650 GHz (at 9.5 GHz)	11,650 GHz (at 9.8 GHz)	14,610 GHz (at 10.5 GHz)	

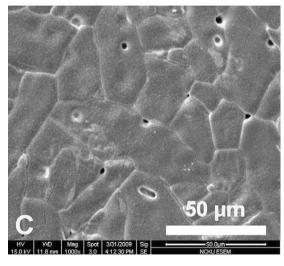


Fig. 6. SEM photographs of as-fired NN ceramics sintered at 1350 $^{\circ}$ C for (A) 2 h, (B) 4 h, and (C) 6 h.

process, 5–8 μ m grains formed in pellets sintered at 1150 °C/2 h [18]. Grain size increased in NN pellets sintered for 4 h as shown in Fig. 5. The average grain sizes for NN ceramics in Figs. 4 and 5 are listed in Table 2. As the sintering temperature increased to 1350 °C, an abnormal grain growth occurred and grains >100 μ m could be found in Fig. 6. Similar abnormal

grain growth was also observed in $Mg_4Nb_2O_9$ via reaction-sintering process, grains >100 μm were observed in pellets sintered at 1200–1300 °C [18]. Kan and Ogawa [7] also found grains >40 μm in Mg_4NbSbO_9 ceramics after calcining at 1100 °C for 10 h then sintering at 1500 and 1600 °C for 10 h.

 $\varepsilon_{\rm r}$ and $Q \times f$ of NN ceramics sintered at various temperatures for 2 h are listed in Table 3. ε_r of 15.4–16.9 are found in pellets sintered at 1200-1300 °C and decreases to 13.2 in pellets sintered at 1350 °C. In NiNb₂O₆ via reaction-sintering process, $\varepsilon_r = 20.7$ was obtained after sintering at 1300 °C/2 h [17]. Yoshida et al. found ε_r decreased from 12.8 to 11.1 with increasing nickel content in $Mg_{4-x}Ni_xNb_2O_9$ (x = 0.5-2) after calcining at 1000 °C for 20 h and sintering at 1200–1500 °C for 10 h [3]. Therefore, the decrease of ε_r in pellets sintered at 1350 °C is due to the increased Ni₄Nb₂O₉ content. $Q \times f$ increased from 9380 GHz in pellets sintered at 1200 °C to 14.650 GHz in pellets sintered at 1250 °C mainly resulted from the increased density. $Q \times f$ decreased to 11,650 GHz in pellets sintered at 1300 °C due to the formation of Ni₄Nb₂O₉ phase (shown in Fig. 1 and Table 1) and the inhomogeneous microstructure (shown in Fig. 4). Yoshida et al. found $Q \times f$ decreased from 84,270 to 28,440 GHz with increasing nickel content in $Mg_{4-x}Ni_xNb_2O_9$ (x = 0.5-2) after calcining at 1000 °C for 20 h and sintering at 1200–1500 °C for 10 h [3].

4. Conclusions

The reaction-sintering process is a simple and effective method for obtaining Ni₄Nb₂O₉ ceramics. Ni₄Nb₂O₉ phase appeared at 1300 °C and increased with increasing soak time. Ni₄Nb₂O₉ content was found >96% in 1350 °C/2 h sintering pellets. Shrinkage values 11.8-15.2% are found at 1170-1350 °C. A density of 5.71 g/cm³ was obtained for pellets sintered at 1350 °C for 2 h. This reaches 96.5% of the theoretical density. Densification in Ni₄Nb₂O₉ ceramic is more difficult than NiNb₂O₆ and Mg₄Nb₂O₉ when the reaction-sintering process was used. Porous pellet with grains <2 \mu m is observed for 1170 °C sintering. Grains > 6 µm could be found in pellets sintered at 1300 °C. As the sintering temperature increased to 1350 °C, an abnormal grain growth occurred and grains >100 μ m could be found. ε_r of 15.4–16.9 are found in pellets sintered at 1200–1300 °C and decreases to 13.2 in pellets sintered at 1350 °C. $Q \times f$ increased from 9380 GHz in pellets sintered at 1200 °C to 14,650 GHz in pellets sintered at 1250 °C.

References

- [1] P.A. Joy, Low temperature synthesis of Mg₄Nb₂O₉, Mater. Lett. 32 (5–6) (1997) 347–349.
- [2] A. Kan, H. Ogawa, Low-temperature synthesis and microwave dielectric properties of Mg₄Nb₂O₉ ceramics synthesized by a precipitation method, J. Alloys Compd. 364 (2004) 247–249.
- [3] A. Yoshida, H. Ogawa, A. Kan, S. Ishihara, Y. Higashida, Influence of Zn and Ni substitutions for Mg on dielectric properties of $(Mg_{4-x}M_x)$ $(Nb_{2-y}Sb_y)O_9$ (M = Zn and Ni) solid solutions, J. Eur. Ceram. Soc. 24 (6) (2004) 1765–1768.
- [4] A. Yokoi, H. Ogawa, A. Kan, H. Ohsato, Y. Higashida, Microwave dielectric properties of Mg₄Nb₂O₉-3.0 wt.% LiF ceramics prepared with CaTiO₃ additions, J. Eur. Ceram. Soc. 25 (12) (2005) 2871–2875.

- [5] A. Kan, H. Ogawa, A. Yokoi, Y. Nakamura, Crystal structural refinement of corundum-structured $A_4M_2O_9$ (A = Co and Mg, M = Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction, J. Eur. Ceram. Soc. 27 (8–9) (2007) 2977–2981.
- [6] L.A. Khalam, S. Thomas, M.T. Sebastian, Tailoring the microwave dielectric properties of MgNb₂O₆ and Mg₄Nb₂O₉ ceramics, Int. J. Appl. Ceram. Technol. 4 (4) (2007) 359–366.
- [7] A. Kan, H. Ogawa, Influence of sintering temperature on microwave dielectric property and crystal structure of corundum-structured Mg₄NbSbO₉ ceramic, J. Alloys Compd. 468 (1–2) (2009) 338– 342.
- [8] R.C. Kell, A.C. Greenham, G.C.E. Olds, High-permittivity temperaturestable ceramic dielectrics with low microwave loss, J. Am. Ceram. Soc. 56 (7) (1973) 352–354.
- [9] C.L. Huang, J.Y. Chen, C.C. Liang, Dielectric properties of a new ceramic system (1 – x)Mg₄Nb₂O₉–xCaTiO₃ at microwave frequency, Mater. Res. Bull. 44 (5) (2009) 1111–1115.
- [10] C.L. Huang, J.Y. Chen, C.C. Liang, Dielectric properties and mixture behavior of Mg₄Nb₂O₉–SrTiO₃ ceramic system at microwave frequency, J. Alloys Compd. 478 (1–2) (2009) 554–558.
- [11] P.H. Sun, T. Nakamura, Y.J. Shan, Y. Inaguma, M. Itoh, Dielectric behavior of (1 x)LaAlO₃-xSrTiO₃ solid solution system at microwave frequencies, Jpn. J. Appl. Phys. 37 (1998) 5625–5629.
- [12] N.V. Tarakina, E.A. Nikulina, J. Hadermann, D.G. Kellerman, A.P. Tyutyunnik, I.F. Berger, V.G. Zubkov, G. Van Tendeloo, Crystal structure

- and magnetic properties of complex oxides $Mg_{4-x}Ni_xNb_2O_9$, $0 \le x \le 4$, J. Solid State Chem. 180 (2007) 3180–3187.
- [13] O. Khamman, R. Yimnirun, S. Ananta, Phase and morphology evolution of corundum-type Ni₄Nb₂O₉ powders synthesized by solid-state reaction, Mater. Lett. 61 (2007) 2565–2570.
- [14] Y.-C. Liou, K.-H. Tseng, Stoichiometric Pb(Mg_{1/3}Nb_{2/3})O₃ perovskite ceramics produced by reaction-sintering process, Mater. Res. Bull. 38 (8) (2003) 1351–1357.
- [15] Y.-C. Liou, C.-T. Wu, K.-H. Tseng, T.-C. Chung, Synthesis of BaTi₄O₉ ceramics by reaction-sintering process, Mater. Res. Bull. 40 (9) (2005) 1483–1489.
- [16] Y.-C. Liou, W.-H. Shiu, C.-Y. Shih, Microwave ceramics $Ba_5Nb_4O_{15}$ and $Sr_5Nb_4O_{15}$ prepared by a reaction-sintering process, Mater. Sci. Eng. B 131 (2006) 142–146.
- [17] Y.-C. Liou, C.-Y. Shiue, M.-H. Weng, Synthesis and properties of TiO₂ added NiNb₂O₆ microwave dielectric ceramics using a simple process, J. Eur. Ceram. Soc. 29 (6) (2009) 1165–1171.
- [18] Y.-C. Liou, Z.-S. Tsai, W.-T. Li, Y.-J. Wang, A simple and effective process for fabrication of Mg₄Nb₂O₉ ceramics, in: ICMAT, Singapore, 28 June–3 July, 2009.
- [19] B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range, IEEE Trans. Microwave Theory Technol. 8 (1960) 402–410.
- [20] H. Ehrenberg, G. Wltschek, H. Weitzel, F. Trouw, J.H. Buettner, T. Kroener, H. Fuess, Ferrimagnetism in Ni₄Nb₂O₉, Phys. Rev. B 52 (13) (1995) 9595–9600.