

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 37 (2011) 249-255

Morphology control of α -Al₂O₃ platelets by molten salt synthesis

Zhu Li-hui *, Huang Qing-wei

Shanghai Key Laboratory of Modern Metallurgy, Materials Processing, P.O. Box 15#, Shanghai University, 149 Yanchang Road, Shanghai 200072, People's Republic of China

Received 25 May 2010; received in revised form 30 June 2010; accepted 25 August 2010 Available online 29 September 2010

Abstract

It is of great importance to control the morphology of α -Al₂O₃ plate-like powders since α -Al₂O₃ platelets with different shapes are needed in various applications. This paper was focused on how to control the morphology of α -Al₂O₃ platelets by molten salt synthesis. Results show that the morphology of α -Al₂O₃ platelets is affected by the heating temperature, heating time, the molten salts species, the weight ratio of salt to powders, additives and the addition of nano-sized seeds. Especially, it is very effective to control the morphology of α -Al₂O₃ platelets by adjusting the addition of additives such as Na₃PO₄·12H₂O and TiOSO₄. α -Al₂O₃ flakes with irregular shape are obtained by the addition of Na₃PO₄·12H₂O and TiOSO₄ makes it possible to obtain thin α -Al₂O₃ platelets with discal shape. A small amount of nano-sized seeds addition also has a strong effect on the size of α -Al₂O₃ platelets. However, if the seeds are added too much, the overlapping and abnormal crystal growth of α -Al₂O₃ platelets occur, and the size distribution becomes nonuniform. The effect mechanism of additives and seeds on the morphology of α -Al₂O₃ platelets was also discussed in this paper.

© 2010 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: B. Platelets; D. α-Al₂O₃; Molten salt synthesis; Additives; Seeds

1. Introduction

Plate-like α-Al₂O₃ powders are applied widely because they exhibit excellent properties, which derive from α -Al₂O₃ and the special two-dimensional structure. For example, α-Al₂O₃ platelets can be added into the ceramics as seeds to induce the abnormal grain growth, leading to the improvement of fracture toughness [1]. Textured Al₂O₃ ceramics with anisotropic properties can be prepared by templated grain growth when suitable α-Al₂O₃ platelets are chosen as templates [2]. Due to high aspect ratio and heat conductivity, α-Al₂O₃ platelets can be added into the plastics to improve the thermal conductivity [3–5]. The commercial slurry for the primary polishing of hard disc is superior in good dispersion stability and desirable orientation when α -Al₂O₃ platelets are added [4]. Since α-Al₂O₃ platelets with different shapes are needed in various applications [4,5], it is of great importance to control the morphology.

Molten salt synthesis is one of the most important techniques to prepare plate-like α -Al₂O₃ powders [5–10]. Compared with the conventional solid-state reaction, the preparation temperature and time can be greatly reduced because of high diffusivity of the components in the molten salt. Besides, the morphology of α -Al₂O₃ can be easily changed by many factors, for example, the precursors, the molten salts, heating temperature, heating time and so on. In this paper, α-Al₂O₃ platelets were obtained by molten salt synthesis using Al₂(SO₄)₃ as raw materials, which was often chosen during molten salt synthesis in the previous investigations [5–9]. First, the effects of heating temperature, heating time, the molten salts species, and the weight ratio of salt to powders on the morphology of α -Al₂O₃ were studied. Considering that the addition of some additives not only decreases the transformation temperature of α -Al₂O₃ [11–14], but also changes the morphology of α -Al₂O₃ platelets obviously [5,8], it is necessary to investigate to control the morphology of α-Al₂O₃ platelets by additives. As the most often-used additives, PO₄³⁻ (introduced by trisodium phosphate) and Ti⁴⁺ (introduced by titanyl sulfate) were chosen in this paper to study the influence of additives on the morphology of α -Al₂O₃ platelets synthesized by molten salt synthesis. The

^{*} Corresponding author. Tel.: +86 21 5633 1462; fax: +86 21 5633 3080. E-mail address: lhzhu@mail.shu.edu.cn (Z. Li-hui).

platelet morphology of α -Al₂O₃ powders was also significantly influenced by the addition of seeds [4,5,9], thus the effect of nano-sized α -Al₂O₃ seeds on the morphology of α -Al₂O₃ platelets was also studied. At the same time, the effect mechanism of Na₃PO₄·12H₂O, TiOSO₄ and seeds on the morphology of α -Al₂O₃ platelets was discussed.

2. Experimental procedure

α-Al₂O₃ platelets were prepared according to the flow chart shown in Fig. 1. Al₂(SO₄)₃·18H₂O (purity: 99.5%, Meixing Chemical Company, Shanghai) and Na₂CO₃ (purity: 99.5%, Hongguang Chemical Company, Shanghai) were used as raw materials. Either mixture sulfate salts $(Na_2SO_4:K_2SO_4 = 1:1,$ molar ratio) or mixture chloride salts (NaCl:KCl = 1:1, molar ratio) were used as molten salts when considering that the mixture salts are more beneficial to the development of α-Al₂O₃ platelets than pure salt. During the preparation of saturated solution A, Al₂(SO₄)₃·18H₂O and the salts were mixed according to the ratio of 1:2, 1:4 and 1:6 respectively, and then were dissolved in de-ionized water at 70 °C. The saturated solution B was obtained by dissolving Na₂CO₃ in deionized water. Solution B was added slowly into solution A at 70 °C and kept stirring rapidly for 15 min. The obtained gel was dried at 120 °C for 24 h and then the product was heated at 1100-1300 °C for 0.5-8 h. The final powders were ultrasonic cleaned with de-ionized water repeatedly to remove the remained salt and then dried.

Either 0.17–0.68% Na₃PO₄·12H₂O or 1–12% TiOSO₄ was added during the formation of sol–gel to control the morphology of α -Al₂O₃ powders. The addition amount of Na₃PO₄·12H₂O and TiOSO₄ is presented by weight, respectively in terms of P₂O₅ and TiOSO₄, relative to the weight of α -Al₂O₃ particles. In order to study the effect of nano-sized α -Al₂O₃ seeds on the morphology of α -Al₂O₃ platelets, 0.1–1 wt.% globular α -Al₂O₃ powders with the average diameter of 60 nm were added during the formation of sol–gel. Mixture

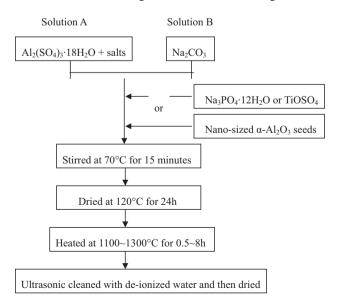


Fig. 1. Flow chart of α -Al₂O₃ platelets.

chloride salts which were composed of NaCl and KCl according to molar ratio of 1:1 were used as molten salts.

The phase assembly of the final powders was examined by X-ray diffraction analysis (RIGAKU, D/MAX-RB) with CuK α radiation ($\lambda = 1.5418$ Å). The morphology of α -Al₂O₃ particles was observed by scanning electron microscope (SEM, S-570).

3. Results and discussion

3.1. Effect of processing parameters on the morphology of α -Al₂O₃ platelets

X-ray diffraction analysis indicates single phase α -Al₂O₃ is synthesized by molten salt synthesis when heated above 1100 °C. The increase of heating temperature and time helps to the development of α -Al₂O₃ and it is easy to obtain well-developed α -Al₂O₃ platelets with big size. However, there is no obvious change in the shape and size of α -Al₂O₃ platelets when the heating temperature increases above 1200 °C or the time exceeds 4 h. Therefore, from the viewpoint of economy, the heating temperature should not be higher than 1200 °C and the heating time should not be longer than 4 h in order to obtain well-developed hexagonal α -Al₂O₃ platelets. In subsequent experiments, α -Al₂O₃ powders were synthesized at 1200 °C for 4 h.

In addition to the heating temperature and time, the morphology of α-Al₂O₃ platelets is affected by the ratio of salt to powders. Fig. 2(a) shows the morphology of α -Al₂O₃ platelets heated at 1200 °C for 4 h in NaCl-KCl flux when the ratio of salt to powders is 2:1. Most of α -Al₂O₃ platelets are hexagonal, but there are some overlapped particles. The more the molten salts are used, the more the crystal growth space is provided and the higher diffusivity of the components in the molten salts is. Therefore, when the ratio of salt to powders increases to 4:1, the overlapping of powders improves, and the diameter of α-Al₂O₃ platelets becomes bigger, see Fig. 2(b). But if the ratio of salt to powders is higher than 6:1, the diffusion distance of the components in the molten salts increases. On the contrary, it is not easy to obtain well-developed hexagonal α-Al₂O₃ platelets, and the size is nonuniform, see Fig. 2(c). High ratio of salt to powders also means that much more water will be spent to remove the salts, so the ratio of salt to powders is fixed to be 4:1 in subsequent experiments.

When different fluxes are chosen, there is obvious difference in the morphology of $\alpha\text{-}Al_2O_3$ platelets even though the heating temperature, heating time and the ratio of salt to powders are fixed. As shown in Fig. 2(d), the shape of $\alpha\text{-}Al_2O_3$ particles becomes irregular and the size is nonuniform when $Na_2SO_4-K_2SO_4$ is used.

3.2. Effect of additives on the morphology of α -Al₂O₃ platelets

The morphology of α -Al₂O₃ platelets is changed easily by the additives rather than processing parameters. The addition of 0.17 wt.% Na₃PO₄·12H₂O only leads to a little decrease in the diameter of α -Al₂O₃ platelets. When 0.34–0.68 wt.% Na₃PO₄·12H₂O are added, the thickness of α -Al₂O₃ is reduced

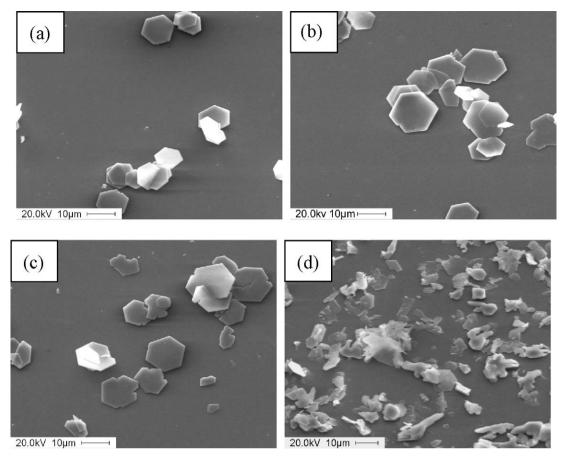


Fig. 2. The morphology of α -Al₂O₃ platelets heated at 1200 °C for 4 h using different molten salts and different ratio of salt to powders. (a) NaCl–KCl, ratio of salt to powders 2:1; (b) NaCl–KCl, ratio of salt to powders 4:1; (c) NaCl–KCl, ratio of salt to powders 6:1; and (d) Na₂SO₄–K₂SO₄, ratio of salt to powders 4:1.

greatly. At the same time, the agglomeration of $\alpha\text{-}Al_2O_3$ powders is inhibited effectively and the particles are overlapped no longer. However, the shape of $\alpha\text{-}Al_2O_3$ flakes becomes quite irregular and the size distribution becomes very broad. SEM micrograph of $\alpha\text{-}Al_2O_3$ flakes added by 0.51 wt.% Na_3PO_4·12H_2O in NaCl–KCl flux is shown in Fig. 3(a). $\alpha\text{-}Al_2O_3$ flakes synthesized in Na_2SO_4–K_2SO_4 flux show similar morphology, see Fig. 3(b).

The addition of $TiOSO_4$ is helpful in the formation of hexagonal α -Al₂O₃ platelets synthesized in NaCl-KCl flux.

Meanwhile, α -Al₂O₃ particles tend to become small and thick, see Fig. 4. When the addition amount of TiOSO₄ increases from 1 wt.% to 6 wt.%, the average diameter of plate-like particles decreases from about 12.2 μ m to 8.6 μ m, and the average thickness increases quickly from 0.7 μ m to 2.1 μ m. There is a slight change in the diameter and thickness of α -Al₂O₃ platelets when more than 6 wt.% TiOSO₄ are added.

As indicated above, α -Al₂O₃ flakes with irregular shape are obtained by the addition of Na₃PO₄·12H₂O, while thick α -Al₂O₃ particles with hexagonal shape are obtained by the

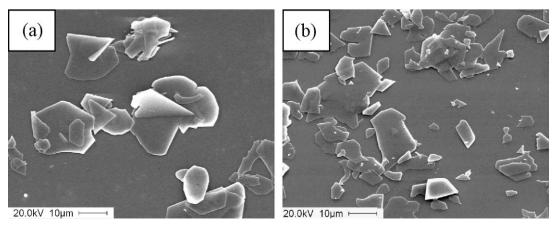


Fig. 3. The morphology of α-Al₂O₃ platelets added by 0.51 wt.% Na₃PO₄·12H₂O in different fluxes: (a) NaCl–KCl and (b) Na₂SO₄–K₂SO₄.

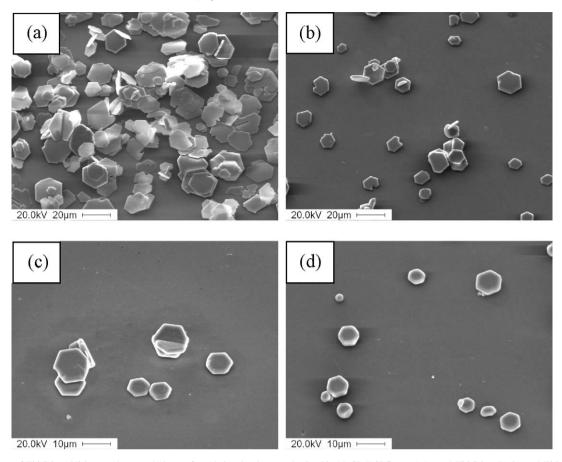


Fig. 4. The effect of TiOSO₄ addition on the morphology of α -Al₂O₃ platelets synthesized in NaCl–KCl flux: (a) 1 wt.% TiOSO₄; (b) 3 wt.% TiOSO₄; (c) 6 wt.% TiOSO₄; (d) 11 wt.% TiOSO₄.

addition of TiOSO₄. The combination addition of Na₃PO₄·12H₂O and TiOSO₄ probably leads to the further change in the morphology of α -Al₂O₃ platelets. Fig. 5(a) and (b) shows α-Al₂O₃ platelets synthesized in NaCl-KCl flux when 0.51 wt.% $\text{Na}_3\text{PO}_4 \cdot 12\text{H}_2\text{O} + 3 \text{ wt.}\%$ TiOSO_4 and $0.51 \text{ wt.}\% \text{ Na}_3\text{PO}_4\cdot 12\text{H}_2\text{O} + 12 \text{ wt.}\% \text{ TiOSO}_4$ are added, separately. The addition of Na₃PO₄·12H₂O helps the formation of thin α -Al₂O₃ platelets, but their shape is still irregular if only 3 wt.% TiOSO₄ is added, see Fig. 5(a). Thin α -Al₂O₃ platelets with discal shape are obtained by the addition of 0.51 wt.% $Na_3PO_4 \cdot 12H_2O + 12$ wt.% $TiOSO_4$, see Fig. 5(b). A similar phenomenon is also found in α-Al₂O₃ platelets synthesized in Na₂SO₄-K₂SO₄ flux, as shown in Fig. 5(c) and (d). Especially, when 0.51 wt.% Na₃PO₄·12H₂O + 12 wt.% TiOSO₄ are added, not only thin α -Al₂O₃ platelets with discal shape are obtained in Na₂SO₄-K₂SO₄ flux, but also the overlapping and agglomeration of α -Al₂O₃ platelets are restrained, see Fig. 5(d). It is very effective to control the morphology of α-Al₂O₃ platelets by adjusting the addition of Na₃PO₄·12H₂O and TiOSO₄.

3.3. Effect of nano-sized seeds on the morphology of α -Al₂O₃ platelets

The size of α -Al₂O₃ platelets is affected significantly by the addition of a small amount of nano-sized seeds. Fig. 6 shows SEM micrographs of α -Al₂O₃ synthesized in NaCl–KCl flux

when added by 0.1 wt.%, 0.5 wt.% and 1 wt.% seeds. For convenience to compare, the micrograph of $\alpha\text{-Al}_2O_3$ platelets without seed addition is also given. The average diameter of $\alpha\text{-Al}_2O_3$ platelets decreases from about 12.2 μm to 1.8 μm quickly even though added by 0.1 wt.% seeds. With the increase of seed amount, the diameter and aspect ratio of $\alpha\text{-Al}_2O_3$ platelets tends to decrease, and the size becomes nonuniform. When 0.5 wt.% seeds are added, there are some overlapped particles and a few $\alpha\text{-Al}_2O_3$ crystals with abnormal growth. The addition of 1 wt.% seeds leads to more crystals with abnormal growth and agglomeration of powders, and the size distribution of $\alpha\text{-Al}_2O_3$ platelets becomes very broad. It seems that the seeds are added too much to obtain a narrow size distribution of $\alpha\text{-Al}_2O_3$ platelets.

4. Discussion

4.1. The effect mechanism of Na_3PO_4 ·12 H_2O and $TiOSO_4$ on the morphology of α - Al_2O_3 platelets

The crystal structure of α -Al₂O₃ is composed of a hexagonal close-packed oxygen layer with Al³⁺ occupying the interstitial sites. α -Al₂O₃ belongs to trigonal system in which the lattice points occupy (0,0,0),(2/3,1/3,1/3) and (1/3,2/3,2/3) for hexagonal coordinate, so the $\{0\ 0\ 0\ 1\}$ faces are hexagon.



Fig. 5. The effect of combination addition of $Na_3PO_4\cdot 12H_2O$ and $TiOSO_4$ on the morphology of α -Al₂O₃ platelets in different fluxes: (a) NaCl-KCl, 0.51 wt.% $Na_3PO_4\cdot 12H_2O + 3$ wt.% $TiOSO_4$; (b) NaCl-KCl, 0.51 wt.% $Na_3PO_4\cdot 12H_2O + 12$ wt.% $TiOSO_4$; (c) $Na_2SO_4-K_2SO_4$, 0.51 wt.% $Na_3PO_4\cdot 12H_2O + 3$ wt.% $TiOSO_4$; (d) $Na_2SO_4-K_2SO_4$, 0.51 wt.% $Na_3PO_4\cdot 12H_2O + 12$ wt.% $TiOSO_4$;

The crystal development can be regarded as a "growth unit" course. It includes the formation of growth unit, the interfacial adsorption of growth unit, the movement of growth unit and the desorption of growth unit. According to the theoretical model of anionic coordination polyhedron growth units, the crystal growth and the final morphology are dependent on the crystallographic orientation and the combination manner of the growth units [15]. In molten salts, [Al–O₆] octahedron is considered as the growth unit for α -Al₂O₃. {10 \(\bar{1}\)0} faces often disappear, {0 0 0 1} faces appear predominantly and {11\(\bar{2}\)0} faces sometimes appear. Therefore, α -Al₂O₃ tends to be hexagonal platelets.

During crystal growth, the morphology of particles may be changed when some ions in the molten salt are adsorbed on the crystal surfaces. When Na₃PO₄·12H₂O is added, PO₄³⁻ is inclined to adsorb on {0 0 0 1} faces where the apex angles of [Al–O₆] octahedron is the least owing to the Coulomb force. Because PO₄³⁻ has large ionic strength, the superimposition of growth units on {0 0 0 1} faces is effectively prohibited by PO₄³⁻, and the growth of α -Al₂O₃ in the thickness is restricted. The growth units tend to superimpose on the other two faces {1 0 \(\bar{1}\) 0} and {1 1 \(\bar{2}\) 0} when they combine with each other. As a result, thin and irregular platelets are finally obtained. Besides, the agglom-

eration and overlapping of platelets are effectively restrained owing to the electrostatic resistance and stereo-hindrance when enough PO_4^{3-} is adsorbed on the α -Al₂O₃ crystal surfaces

When TiOSO₄ is added, Ti⁴⁺ ions can diffuse into Al₂O₃ to substitute Al³⁺ ions at high temperatures [5]. In order to keep the electrostatic balance, three Ti⁴⁺ ions diffuse into the crystal lattice to substitute four Al³⁺ ions. As a result, the development of growth units and crystals may be affected by the lattice deformation due to the existence of extra Al³⁺ vacancies. The growth velocity of $\{1\,0\,\bar{1}\,0\}$ and $\{1\,1\,\bar{2}\,0\}$ crystal faces is reduced and there is a minor difference in the growth velocity of various crystal faces. Thus the addition of TiOSO₄ is helpful in the formation of well-developed hexagonal $\alpha\text{-Al}_2\text{O}_3$ particles with decreased size and increased thickness.

The morphology of α -Al $_2$ O $_3$ platelets can be adjusted under the combined action of PO $_4$ ³⁻ and Ti⁴⁺. On the one hand, the superimposition of growth units on $\{0\ 0\ 0\ 1\}$ faces is effectively inhibited by PO $_4$ ³⁻. On the other hand, the difference in the growth velocity of various crystal faces is reduced by Ti⁴⁺. The combination addition of Na $_3$ PO $_4$ ·12H $_2$ O and TiOSO $_4$ makes it possible to obtain thin α -Al $_2$ O $_3$ platelets with discal shape.

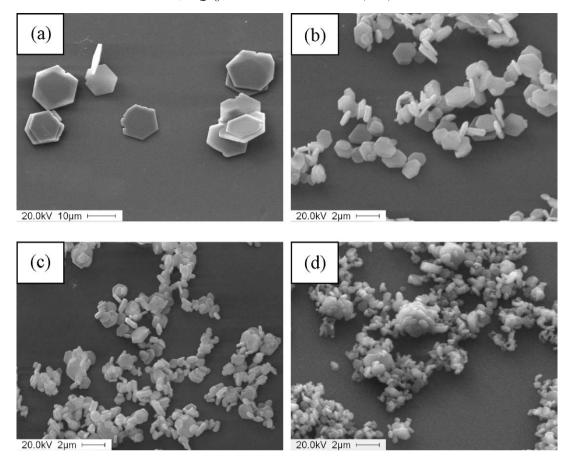


Fig. 6. The effect of nano-sized seeds on the morphology of α-Al₂O₃ platelets: (a) 0 wt.% seeds; (b) 0.1 wt.% seeds; (c) 0.5 wt.% seeds; (d) 1 wt.% seeds.

4.2. The effect mechanism of nano-sized seeds on the morphology of α -Al₂O₃ platelets

The formation of α -Al₂O₃ platelets in molten salt should be a nucleation-growth process. When solution B is added slowly into solution A, the following reaction will happen.

$$3Na_2CO_3 + Al_2(SO_4)_3 + 3H_2O = 3Na_2SO_4 + 2Al(OH)_3 + 3CO_2 \uparrow$$

During heating, the thermal decomposition of Al(OH)₃ results in the formation of α -Al₂O₃, which can act as the nuclei of α -Al₂O₃ platelets. When nano-sized α -Al₂O₃ seeds are added, extra nucleation sites can be provided by the seeds since they have small size and the same crystal structure as α -Al₂O₃ nuclei. In the later stage, α-Al₂O₃ particles grow large from the nuclei provided by either the nano-sized seeds or α-Al₂O₃ formed by the decomposition of Al(OH)₃. Therefore, fine α -Al₂O₃ platelets are obtained accompanied by the increase in the nuclei of α -Al₂O₃. However, α -Al₂O₃ platelets directly developed from nano-sized α-Al₂O₃ seeds have small aspect ratio because it is limited by globular shape of α -Al₂O₃ seeds. As a result, the diameter and aspect ratio of α -Al₂O₃ platelets tends to decrease when more nano-sized α-Al₂O₃ seeds are added. If too much seeds are added, some seeds which close up to each other are probably integrated by α-Al₂O₃ crystals precipitated during molten salt synthesis. The phenomena of overlapping and abnormal crystal growth maybe take place. The size distribution of α -Al₂O₃ platelets becomes very broad.

5. Conclusions

α-Al₂O₃ platelets are synthesized by molten salt synthesis using Al₂(SO₄)₃ as raw materials, and their morphology can be changed by the heating temperature, heating time, the molten salts species, the weight ratio of salt to powders, additives and the addition of nano-sized seeds. Especially, it is very effective to control the morphology of α -Al₂O₃ platelets by adjusting the addition of additives such as Na₃PO₄·12H₂O and TiOSO₄. α-Al₂O₃ flakes with irregular shape are obtained by the addition of Na₃PO₄·12H₂O, while thick α-Al₂O₃ particles with hexagonal shape are obtained by the addition of TiOSO₄. The combination addition of Na₃PO₄·12H₂O and TiOSO₄ makes it possible to obtain thin α-Al₂O₃ platelets with discal shape. A small amount of nano-sized seeds addition also has a strong effect on the size of α -Al₂O₃ platelets. However, if the seeds are added too much, the overlapping and abnormal crystal growth of α-Al₂O₃ platelets occur, and the size distribution becomes nonuniform.

Acknowledgements

The work was supported by the Science Innovation Foundation of Shanghai Municipal Commission of Education

under the grant 09YZ26. The authors were grateful for the help provided by Ms. Zhang Qian-Ying and Ms. Dai Yue-Qin during the experiments.

References

- Y. Yoshizawa, M. Toriyama, S. Kanzaki, Preparation of high fracture toughness alumina sintered bodies from bayer aluminum hydroxide, Journal of the Ceramic Society of Japan 106 (12) (1998) 1172–1177.
- [2] M.M. Seabaugh, I.H. Kerscht, G.L. Messing, Texture development by templated grain growth in liquid-phase-sintered α-alumina, Journal of the American Ceramic Society 80 (5) (1997) 1181–1188.
- [3] R.F. Hill, R. Danzer, Synthesis of aluminum oxide platelets, Journal of the American Ceramic Society 84 (3) (2001) 514–520.
- [4] T. Fukuda, R. Shido, Flaky-like alpha-alumina particles and method for producing the same, EN Patent 1 148 028 A2, 4 December 2001.
- [5] K. Nitta, T.M. Shau, J. Sugahara, Flaky aluminum oxide and pearlescent pigment and production thereof, EN Patent 0 763 573 A2, 5 September 1997.
- [6] S. Hashimoto, A. Yamaguchi, Synthesis of α-Al₂O₃ platelets using sodium sulfate flux, Journal of Materials Research 14 (12) (1999) 4667–4672.
- [7] S. Hashimoto, A. Yamaguchi, Formation of porous aggregations composed of Al₂O₃ platelets using potassium sulfate flux, Journal of the European Ceramic Society 19 (1999) 335–339.

- [8] S. Hashimoto, A. Yamaguchi, Effect of impurities on morphology of α-alumina platelets formed by using sodium sulfate flux, Advances in Science and Technology Part B 29 (2000) 711–718.
- [9] X.H. Jin, L. Gao, Size control of α -Al₂O₃ platelets synthesized in molten Na₂SO₄ flux, Journal of the American Ceramic Society 87 (4) (2004) 533–540
- [10] L.-H. Zhu, Q.-W. Huang, W. Liu, Synthesis of plate-like α-Al₂O₃ single-crystal particles in NaCl–KCl flux using Al(OH)₃ powders as starting materials, Ceramics International 34 (7) (2008) 1729–1733.
- [11] Y.Q. Wu, Y.F. Zhang, G. Pezzotti, Influence of AIF₃ and ZnF₂ on the phase transformation of gamma to alpha alumina, Materials Letters 52 (2002) 366–369.
- [12] Z.Y. Song, Y.C. Wu, Preparation of alumina ultrafine powders and its modification by titania doping, Journal of Chinese Ceramic Society 32 (8) (2004) 920–925.
- [13] L. Jiang, Y.S. Wu, Y.B. Pan, W.B. Lin, J.K. Guo, Influence of fluorides on phase transition of α -Al₂O₃ formation, Ceramics International 33 (6) (2007) 919–923.
- [14] H.J. Kim, T.G. Kim, J.J. Kim, S.S. Park, S.S. Hong, G.D. Lee, Influences of precursor and additive on the morphology of nanocrystalline α-alumina, Journal of Physics and Chemistry of Solids 69 (2008) 1521–1524.
- [15] W. Li, E. Shi, Z. Yin, Theoretical model of anionic coordination polyhedron growth units and the growth habits of crystals, Science in China 31 (6) (2001) 487–495.