

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 37 (2011) 779-782

Effects of Zn or Ti substitution for Ni on the electrochemical properties of LiNiO₂

Hun Uk Kim^a, Jihong Song^b, Daniel R. Mumm^c, Myoung Youp Song^{d,*}

^a Department of Chemical Engineering, Hangyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
^b College of Arts and Sciences, Cornell University, 147 Goldwin Smith, Ithaca, NY 14853, USA
^c Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
^d Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Research Center of Advanced Materials Development,
Engineering Research Institute, Chonbuk National University,
664-14 Iga Deogjindong Deogjingu, Jeonju, 561-756, Republic of Korea

Received 30 August 2010; received in revised form 15 September 2010; accepted 7 October 2010 Available online 17 November 2010

Abstract

LiNiO₂ and LiNi_{1-y}M_yO₂ (M = Zn and Ti, y = 0.005, 0.01, 0.025, 0.05, and 0.1) were synthesized with a solid-state reaction method by calcination at 750 °C for 30 h under oxygen stream after preheating at 450 °C for 5 h in air. LiNi_{0.995}Zn_{0.005}O₂ among the Zn-substituted samples and LiNi_{0.995}Ti_{0.005}O₂ among the Ti-substituted samples showed the best electrochemical properties. For similar values of y, LiNi_{1-y}Ti_yO₂ had in general better electrochemical properties than LiNi_{1-y}Zn_yO₂. Electrochemical properties seem to be closely related to R-factor but less related to $I_{0 \ 0 \ 3}/I_{1 \ 0 \ 4}$ value. In the FT-IR absorption spectra of LiNiO₂ and LiNi_{1-y}M_yO₂ (M = Zn and Ti, y = 0.005, 0.01, 0.025, 0.05 and 0.1), Li₂CO₃ was detected even if it is not observed from XRD pattern, with the samples LiNi_{1-y}Zn_yO₂ (y = 0.05 and 0.1) showing Li₂ZnO₂ additionally. The smaller cation mixing of the Ti-substituted samples is considered to lead to their better electrochemical properties than the Zn-substituted samples.

© 2010 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: LiNiO₂; Zn or Ti substitution; R-factor; I_{0 0 3}/I_{1 0 4} value; Cation mixing electrochemical properties

1. Introduction

Lithium transition metal oxides such as LiCoO₂ [1,2], LiNiO₂ [3,4], and LiMn₂O₄ [5,6] have been investigated as cathode electrode materials for rechargeable lithium batteries. LiCoO₂ is studied most intensively for the application to commercial rechargeable batteries because of large diffusivity and high operating voltage. However, it has drawbacks that cobalt is expensive and toxic. LiMn₂O₄ has several advantages that Mn is cheaper than other elements and its synthesis is easy, but its cycling performance is not good. LiNiO₂ is considered a promising cathode material due to large discharge capacity and low cost. However, due to the size similarity of Li and Ni (Li⁺ = 0.72 Å and Ni²⁺ = 0.69 Å), LiNiO₂ is practically obtained in the non-stoichiometric composition Li_{1-v}Ni_{1+v}O₂

good cycling performance.

LiNiO₂ were investigated.

LiNiO₂ and LiNi_{1-y}M_yO₂ (M = Zn and Ti, y = 0.005, 0.01, 0.025, 0.05, and 0.1) were synthesized by a solid-state reaction method. LiOH·H₂O (Kojundo Chemical Lab. Co., Ltd, purity 99%), Ni(OH)₂ (Kojundo Chemical Lab. Co., Ltd, purity

[7,8] and the Ni²⁺ ions in the lithium planes obstruct movement of Li⁺ ions during charge and discharge [9,10]. To overcome

this disadvantage, Ni in LiNiO₂ was substituted partially by Co,

Al, Fe, Ti, etc. Gao et al. [11] synthesized LiNi_{1- ν}Ti_{$\nu/2$}Mg_{$\nu/2$}O₂

with improved stability. Kim and Amine [12] prepared

 $LiNi_{1-v}M_vO_2$ (M = Cu, Al, and Ti) by solid state method

and showed that LiNi_{1-v}Ti_vO₂ had large discharge capacity and

synthesized by a solid-state reaction method and the effects of

Zn or Ti substitution for Ni on the electrochemical properties of

In this study, $\text{LiNi}_{1-\nu}M_{\nu}O_2$ (M = Ni, Zn, and Ti) were

^{2.} Experimental

^{*} Corresponding author. Tel.: +82 63 270 2379; fax: +82 63 270 2386. E-mail address: songmy@jbnu.ac.kr (M.Y. Song).

99.9%), ZnO (Aldrich Co., purity 99%), and TiO₂ (anatase) (Aldrich Co., purity 99%) were used as starting materials. The starting materials with a composition of LiNiO₂ were mixed mechanically by a SPEX mill for 1 h. The mixed material was preheated at 450 °C for 5 h in air, pressed into a pellet and then calcined at various temperatures and times under oxygen stream. The sample calcined at 750 °C for 30 h under oxygen stream showed the best electrochemical properties [13]. LiNi_{1-y}M_yO₂ (M = Zn and Ti, y = 0.005, 0.01, 0.025, 0.05, and 0.1) were also synthesized under the same conditions. The samples were characterized by X-ray diffraction analysis (Rigaku III/A diffractometer) using Cu K α radiation. The scanning rate was 6 min⁻¹ and the scanning range of diffraction angle (2 θ) was $10^{\circ} \le 2\theta \le 80^{\circ}$.

The electrochemical cells consisted of LiNiO_2 or $\text{LiNi}_{1-y} \text{M}_y \text{O}_2$ as a positive electrode, Li foil as a negative electrode, and electrolyte [Purelyte (Samsung General Chemicals Co., Ltd)] prepared by solving 1 M LiPF₆ in an 1:1 (volume ratio) mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). The positive electrode consisted of 85 wt% synthesized materials, 10 wt% acetylene black, and 5 wt% polyvinylidene fluoride (PVDF) binder solved in N-methyl-2-pyrrolidinone (NMP). A Whatman glass-filer was used as a separator. The cells were assembled in an argon-filled dry box and the coin-type (2016) cell was employed. All the electrochemical tests were galvanostatically cycled in the voltage range 2.7–4.2 V at 0.1 C-rate.

3. Results and discussion

Fig. 1 shows variations of discharge capacity at 0.1 C-rate with the number of cycles for $\text{LiNi}_{1-y}\text{Zn}_y\text{O}_2$ (y = 0.005, 0.01, 0.025, 0.05, and 0.1) calcined at 750 °C for 30 h.

Ohzuku et al. [14] reported that the electrochemically reactive LiNiO₂ showed larger integrated intensity ratio of 0 0 3 peak to 1 0 4 peak ($I_{0\ 0\ 3}/I_{1\ 0\ 4}$) and a clear split of the 1 0 8 and 1 1 0 peaks in their XRD patterns. The degree of cation mixing

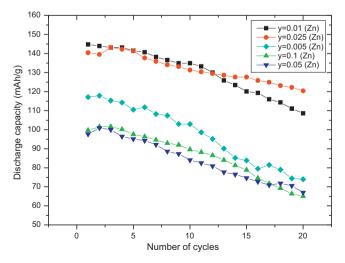


Fig. 1. Variations of discharge capacity at 0.1 C-rate with the number of cycles for LiNi $_{1-y}$ Zn $_y$ O $_2$ (y=0.005,0.01,0.025,0.05 and 0.1) calcined at 750 °C for 30 h.

(displacement of nickel and lithium ions) is low if the value of $I_{0\ 0\ 3}/I_{1\ 0\ 4}$ is large and the 1 0 8 and 1 1 0 peaks are split clearly. The value of $(I_{0\ 0\ 6}+I_{1\ 0\ 2})/I_{1\ 0\ 1}$, called the *R*-factor, is known to be smaller as the unit cell volume of $\text{Li}_y\text{Ni}_{2-y}\text{O}_2$ gets smaller. The *R*-factor increases as *y* in $\text{Li}_y\text{Ni}_{2-y}\text{O}_2$ decreases for *y* near 1. This indicates that the *R*-factor increases as the degree of cation mixing becomes larger [15].

Table 1 shows data calculated from XRD patterns of $\text{LiNi}_{1-y}\text{Zn}_y\text{O}_2$ ($y=0.005,\ 0.01,\ 0.025,\ 0.05,\ \text{and}\ 0.1$) 750 °C for 30 h under oxygen stream. When Zn is substituted, $\text{LiNi}_{0.99}\text{Zn}_{0.01}\text{O}_2$ with the highest $I_{0\ 0\ 3}/I_{1\ 0\ 4}$ value has the largest first discharge capacity (144.8 mAh/g) while $\text{LiNi}_{0.975}\text{Zn}_{0.025}\text{O}_2$ with the smallest R-factor has smaller first discharge capacity 140.5 mAh/g than $\text{LiNi}_{0.99}\text{Zn}_{0.01}\text{O}_2$, but $\text{LiNi}_{0.975}\text{Zn}_{0.025}\text{O}_2$ shows better cyclability than $\text{LiNi}_{0.99}\text{Zn}_{0.01}\text{O}_2$.

Fig. 2 shows variations of discharge capacity at 0.1 C-rate with the number of cycles for $\text{LiNi}_{1-y}\text{Ti}_y\text{O}_2$ (y = 0.005, 0.01, 0.025, 0.05, and 0.1) calcined at 750 °C for 30 h. As the fraction of Ti increases, the first discharge capacity decreases while cyclability improves. For similar values of y, $\text{LiNi}_{1-y}\text{Ti}_y\text{O}_2$ had in general better electrochemical properties than $\text{LiNi}_{1-y}\text{Zn}_y\text{O}_2$.

Table 2 shows data calculated from XRD patterns of $\text{LiNi}_{1-y}\text{Ti}_y\text{O}_2$ (y = 0.005, 0.01, 0.025, 0.05, and 0.1) 750 °C for 30 h under oxygen stream. $\text{LiNi}_{0.995}\text{Ti}_{0.005}\text{O}_2$ with the smallest R-factor has not only the largest first discharge capacity (169.8 mAh/g) but also relatively good cycling performance.

Fig. 3 shows the FT-IR absorption spectrum of LiNiO₂. IR modes correspond to vibrations involving primarily atomic motion of cations against their oxygen neighbors [16]. The strong peaks at 555 and 509 cm⁻¹ are considered to correspond to MO₆ group [16] and the peak at 412 cm⁻¹ is considered to correspond to O–M–O chemical bond. The bond between Li and oxygen, O–Li–O bond, is not observed. This bond was reported to appear below the wavenumber 400 cm⁻¹ [16]. The peaks at 1515, 1450, and 871 cm⁻¹ are reported to correspond to Li₂CO₃ peak [17]. This shows that Li₂CO₃ is contained in the LiNiO₂ sample even if it is not observed from XRD pattern.

Fig. 4 shows the FT-IR absorption spectra of LiNi_{1-y}Zn_yO₂ (y = 0.005, 0.01, 0.025, 0.05, and 0.1). The peaks of Li₂CO₃ are observed. The samples LiNi_{1-y}Zn_yO₂ (y = 0.05 and 0.1) show a weak peak at 447 cm⁻¹. This peak is considered to be related to the Li₂ZnO₂ phase contained in these samples.

Fig. 5 shows the FT-IR absorption spectra of $LiNi_{1-y}Ti_yO_2$ (y = 0.005, 0.01, 0.025, 0.05, and 0.1). The peaks of Li_2CO_3 are

Table 1 Data calculated from XRD patterns of $\text{LiNi}_{1-y}\text{Zn}_y\text{O}_2$ (y = 0.005, 0.01, 0.025, 0.05, and 0.1) 750 °C for 30 h under oxygen stream.

Samples	Unit cell volume (Å ³)	I _{0 0 3} /I _{1 0 4}	R-factor
y = 0.1	102.715	0.91	0.76
y = 0.05	102.244	1.05	0.72
y = 0.025	102.173	1.07	0.49
y = 0.01	102.203	1.08	0.54
y = 0.005	102.244	1.05	0.57

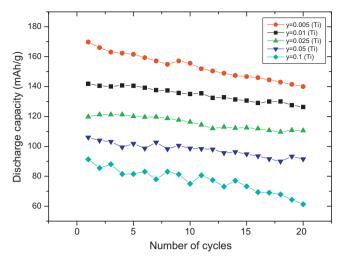


Fig. 2. Variations of discharge capacity at 0.1 C-rate with the number of cycles for LiNi_{1-y}Ti_yO₂ (y = 0.005, 0.01, 0.025, 0.05 and 0.1) calcined at 750 °C for 30 h.

observed. As the substituted Ti content increases, the peak at 570 cm⁻¹ becomes weaker and the peak at 440 cm⁻¹ becomes stronger. With the increase in the substituted Ti content, the peaks at 505 and 440 cm⁻¹ move to the larger wavenumber side. The peak at 505 cm⁻¹ becomes split as the substituted Ti content increases. This is considered because the stable ionic state is +4 and the substituted Ti does not exist as O–M–O single bonds but the substituted Ti exists as O–M=O or O=M–O double bonds.

When Zn and Ti are substituted for Ni in LiNiO2, it is observed that the first discharge capacity and cyclability are closely related to the R-factor value as those of LiNiO2 not substituted are. Dahn et al. [15] reported that lower unit cell volume does indicate lower R-factor value and higher value of y for Li_vNi_{2-v}O₂. The first discharge capacity and cyclability were less related to $I_{0\ 0\ 3}/I_{1\ 0\ 4}$ value than to unit cell volume and R-factor of the samples. Subramanian and Fey [18] reported that $LiNi_{0.7}Co_{0.2}Ti_{0.05}M_{0.05}O_2$ with M = Zn showed small $I_{0\ 0\ 3}/I_{1\ 0\ 4}$ value and small first discharge capacity. However, capacity increased with charge-discharge cycling without formation of impurity. In our work, as the fraction of substituted Zn increases, the quantity of impurities (ZnO and Li₂ZnO₂) increases, and discharge capacity decreases with charge-discharge cycling. For $LiNi_{1-\nu}Ti_{\nu}O_2$, as the value of y increases, the first discharge capacity decreases while cycling performance is improved.

Table 2 Data calculated from XRD patterns of $\text{LiNi}_{1-y}\text{Ti}_y\text{O}_2$ (y = 0.005, 0.01, 0.025, 0.05, and 0.1) 750 °C for 30 h under oxygen stream.

Samples	Unit cell volume (Å ³)	I _{0 0 3} /I _{1 0 4}	R-factor
y = 0.1	102.747	0.70	0.76
y = 0.05	102.453	0.95	0.64
y = 0.025	102.075	1.15	0.55
y = 0.01	102.232	1.14	0.53
y = 0.005	102.251	1.06	0.5

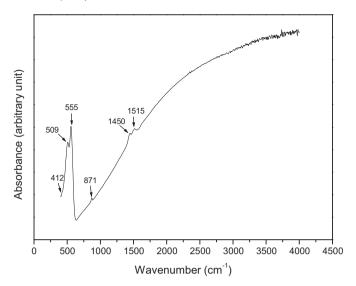


Fig. 3. FT-IR absorption spectrum of LiNiO2.

Kim and Amine [12] suggested that the Ti⁴⁺ may compensate for the charge deficit caused by Ni²⁺ ions in the transition metal layer and prohibit the migration of Ni²⁺ into the lithium layer, facilitating smooth lithium transport. Kang et al. [19] reported that, although Ti is substituted for Ni in LiNiO₂, Ni²⁺ still exists and Ni²⁺ is partially stabilized in lithium sites. Comparison of Figs. 1 and 2 shows that LiNi_{1-y}Ti_yO₂ have better electrochemical properties than LiNi_{1-y}Zn_yO₂. Fig. 6

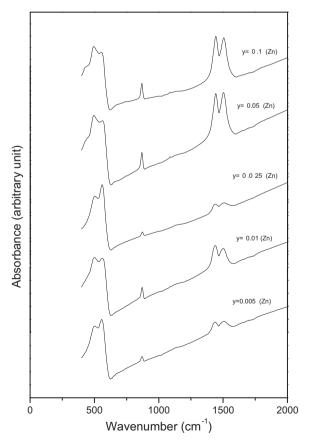


Fig. 4. FT-IR absorption spectra of LiNi_{1-v}Zn_vO₂.

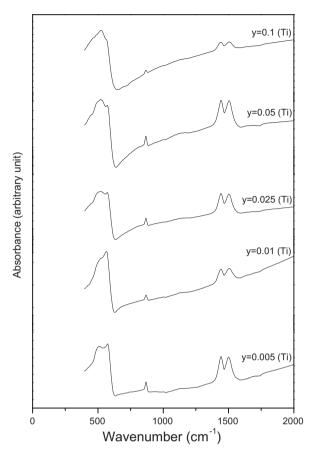


Fig. 5. FT-IR absorption spectra of LiNi_{1-y}Ti_yO₂.

shows schematic illustration of atom distribution for $\text{LiNi}_{1-y}\text{Zn}_y\text{O}_2$ and $\text{LiNi}_{1-y}\text{Ti}_y\text{O}_2$. It is considered that Zn ions occupy the lithium sites since Zn ion has the same oxidation number as Ni^{2+} and an ionic radius of 0.74 Å similar to that of Ni^{2+} (0.69 Å) [20], resulting in larger cation mixing. The movement of lithium may be obstructed when Zn^{2+} occupies the lithium sites in the same way as Ni^{2+} in the lithium sites does. The number of Ni^{2+} in the Li layer is considered to be smaller, as suggested by Kim and Amine [12], and accordingly the number of Ni^{2+} in the transition metal layer is larger, compared with those in the Zn-substituted samples. The smaller

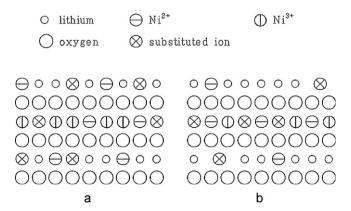


Fig. 6. Schematic illustration of atom distribution for (a) $\text{LiNi}_{1-y}Zn_yO_2$ and (b) $\text{LiNi}_{1-y}Ti_yO_2$.

cation mixing of the Ti-substituted samples is considered to lead to their better electrochemical properties than the Zn-substituted samples.

4. Conclusions

LiNiO₂ and LiNi_{1-v} M_v O₂ (M = Zn and Ti, y = 0.005, 0.01, 0.025, 0.05, and 0.1) were synthesized with solid-state reaction method by calcination at 750 °C for 30 h under oxygen stream after preheating at 450 °C for 5 h in air. LiNi_{0.995}Zn_{0.005}O₂ among the Zn-substituted samples and LiNi_{0.995}Ti_{0.005}O₂ among the Ti-substituted samples showed the best electrochemical properties. LiNi_{0.995}Ti_{0.005}O₂ with the smallest Rfactor has not only the largest first discharge capacity (169.8 mAh/g) but also relatively good cycling performance. For similar values of y, LiNi_{1-y}Ti_yO₂ had in general better electrochemical properties than LiNi_{1-v}Zn_vO₂. Electrochemical properties seemed to be closely related to R-factor but less related to $I_{0\ 0\ 3}/I_{1\ 0\ 4}$ value. In the FT-IR absorption spectra of $LiNiO_2$ and $LiNi_{1-y}M_yO_2$ (M = Zn and Ti, y = 0.005, 0.01, 0.025, 0.05, and 0.1), Li₂CO₃ was detected even if it is not observed from XRD pattern, with the samples LiNi_{1-v}Zn_vO₂ (y = 0.05 and 0.1) showing Li₂ZnO₂ additionally. The smaller cation mixing of the Ti-substituted samples is considered to lead to their better electrochemical properties than the Znsubstituted samples.

References

- [1] K. Ozawa, Solid State Ionics 69 (1994) 212.
- [2] Z.S. Peng, C.R. Wan, C.Y. Jiang, J. Power Sources 72 (1998) 215.
- [3] J.R. Dahn, U. von Sacken, M.W. Juzkow, H. Al-Janaby, J. Electrochem. Soc. 138 (1991) 2207.
- [4] M.Y. Song, R. Lee, Solid State Ionics 111 (2002) 97.
- [5] J.M. Tarascon, E. Wang, F.K. Shokoohi, W.R. Mckinnon, S. Colson, J. Electrochem. Soc. 138 (1991) 2859.
- [6] M.Y. Song, D.S. Ahn, Solid State Ionics 112 (1998) 245.
- [7] P. Barboux, J.M. Tarascon, F.K. Shokoohi, J. Solid State Chem. 94 (1991) 185.
- [8] J. Morales, C. Perez-Vicente, J.L. Tirado, Mater. Res. Bull. 25 (1990) 623.
- [9] A. Rougier, I. Saadoune, P. Gravereau, P. Willmann, C. Delmas, Solid State Ionics 90 (1996) 83.
- [10] J. Neudecker, R.A. Zuhr, B.S. Kwak, J.B. Bates, J. Electrochem. Soc. 145 (1998) 4161.
- [11] Y. Gao, M.V. Yakovleva, W.B. Ebner, Electrochem. Solid State Lett. 1 (3) (1998) 117.
- [12] J Kim, K. Amine, J. Power Sources 104 (2002) 33.
- [13] H.U. Kim, S.D. Youn, J.C. Lee, H.R. Park, M.Y. Song, J. Kor. Ceram. Soc. 42 (5) (2005) 319.
- [14] T. Ohzuku, A. Ueda, M. Nagayama, J. Electrochem. Soc. 140 (1993) 1862.
- [15] J.R. Dahn, U. von Sacken, C.A. Michal, Solid State Ionics 44 (1990) 87.
- [16] S.S. Julien, S. Michael, Ziolkiewicz, Int. J. Inorg. Mater. 1 (1999) 29.
- [17] B. Ein-Eli, D. Markovsky, Y. Aurbach, H. Carmell, H. Yamin, S. Luski, Electrochim. Acta 39 (1994) 2559.
- [18] V. Subramanian, G.T.K. Fey, Solid State Ionics 148 (2002) 351.
- [19] S.H. Chang, S.G. Kang, S.W. Song, J.B. Yoon, J.H. Choy, Solid State Ionics 86–88 (1996) 171.
- [20] R.D. Shannon, Acta Crystallogr. A32 (1976) 751.