

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 37 (2011) 989-993

Effects of CaSiO₃ addition on sintering behavior and microwave dielectric properties of Al₂O₃ ceramics

Jin-min Chen ^a, Huan-ping Wang ^a, Si-qiao Feng ^a, Hong-ping Ma ^b, De-gang Deng ^a, Shi-qing Xu ^{a,*}

^a College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
^b School of Mechanical & Automotive Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China
Received 3 September 2010; received in revised form 17 September 2010; accepted 6 November 2010
Available online 2 December 2010

Abstract

The effects of CaSiO₃ addition on the sintering behavior and microwave dielectric properties of Al₂O₃ ceramics have been investigated. The addition of CaSiO₃ into Al₂O₃ ceramics resulted in the emergence of Ca₂Al₂SiO₇ and CaAl₂Si₂O₈, which acting as liquid sintering aids can effectively lower the sintering temperature of Al₂O₃ ceramic. The $Q \times f$ value of Al₂O₃–CaSiO₃ ceramics decreased with the CaSiO₃ addition increasing because of the lower $Q \times f$ value of Ca₂Al₂SiO₇ and CaAl₂Si₂O₈. Compared with the pure CaSiO₃ ceramic, the Al₂O₃–CaSiO₃ ceramic with 20 wt% CaSiO₃ addition possessed good dielectric properties of $\varepsilon_r = 9.36$ and $Q \times f = 13,678$ GHz at the similar sintering temperature. Crown Copyright © 2010 Published by Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Microwave dielectric properties; Al₂O₃ ceramic; CaSiO₃ addition

1. Introduction

Development of microwave dielectric materials for applications in communication systems such as cellular phones, direct broadcasting satellites, wireless local area networks, global positioning systems and intelligent transport systems has been rapidly progressing in the past decades [1–3]. Utilized frequency has also increased from microwave to millimeterwave range because large quantity of information must be transported with high speed. Dielectric resonator materials for millimeter-wave use are required to have high quality values $(Q \times f)$ and relatively low dielectric constant (ε_r) [4].

Al $_2O_3$ ceramic with low ε_r (9.8) and high $Q \times f$ (360,000 GHz) is a promising materials for millimeter-wave applications [5,6], and commercially available alumina normally has a $Q \times f$ value around 10,000–20,000 GHz [7]. However, the high melting point of Al $_2O_3$ necessitates a high sintering temperature of around 1700 °C [8,9]. In order to lower the sintering temperature of Al $_2O_3$ ceramic, nanoparticles and sintering aids such as TiO $_2$, MnO, ZnO–B $_2O_3$ –SiO $_2$ (ZBS)

glass and MgO–CaO–Al $_2$ O₃–SiO $_2$ (MCAS) glass have been used [4,10–14]. With TiO $_2$ addition, alumina ceramics possesses a quality factor of 333,000 GHz sintered at 1500 °C [10]. Using nano-particle-sized starting material, α -Al $_2$ O $_3$ ceramics can be sintered at 1500 °C and promotes its $Q \times f$ value to 500,000 GHz [11]. The Al $_2$ O $_3$ ceramics added with TiO $_2$ and MCAS glass have been sintered at the temperature of 1350 °C, and possess good dielectric properties: $\varepsilon_r = 11.6$, $Q \times f = 11,456$ GHz [14].

CaSiO₃ ceramic is also an important low dielectric constant material, and possesses good dielectric properties of $\varepsilon_r = 6.59$ and $Q \times f = 13,109$ GHz at the sintering temperature of 1340 °C [15]. In this work, CaSiO₃ was used as the sintering aid to lower the sintering temperature of Al₂O₃ ceramic. The sintering behavior, microstructures and microwave dielectric properties of Al₂O₃–CaSiO₃ ceramics were investigated.

2. Experimental procedure

Commercial oxide powders (>99.5%): $CaCO_3$, SiO_2 and Al_2O_3 were used as raw materials, and the specimens were prepared by a conventional solid-state method. Initially, $CaCO_3$ and SiO_2 powders were weighed according to the composition of $CaSiO_3$, and ground in ethanol for 24 h in a balling mill with ZrO_2 balls. Prepared powders were dried and calcined at 1100-1200 °C for 2 h

^{*} Corresponding author. Tel.: +86 571 86835781; fax: +86 571 28889527. E-mail address: sxucjlu@hotmail.com (S.-q. Xu).

in air. The $CaCO_3$ – SiO_2 powders calcined at $1200\,^{\circ}C$ were mixed with Al_2O_3 powders, and the content of $CaSiO_3$ was 2, 5, 10, 20, 30 and 40 in wt%. The mixed powders were remilled for 24 h with 8 wt% polyvinyl alcohol (PVA) solution as a binder, and then pressed into pellets with 15 mm in diameter and 8 mm in thickness. These pellets were sintered at the temperatures of 1275– $1575\,^{\circ}C$ for 2 h in air with the heating rate of $5\,^{\circ}C/min$.

The bulk densities of the sintered pellets were measured by the Archimedes method. The crystalline phases of sintered ceramics were performed by X-ray diffraction pattern (XRD, ARL XTRA, Cu K_α). The microstructure observation of the sintered ceramics was identified by means of scanning electron microscopy (SEM, JSM-5601). Microwave dielectric constants ε_r and the quality values $Q\times f$ at microwave frequencies were measured by Hakki–Coleman dielectric resonator method using an Agilent 8719ET (50 MHz–13.5 GHz) Network Analyzer.

3. Results and discussion

Fig. 1 shows the X-ray diffraction patterns of alumina powders and $CaCO_3$ – SiO_2 powders calcined at different temperatures. It can be seen clearly that both SiO_2 phase and $CaSiO_3$ phase were present in almost the same amount at the calcination temperature of $1100\,^{\circ}C$. When the calcination temperature increased to $1200\,^{\circ}C$, the presence of $CaSiO_3$ phase was observed as the main crystalline phase, compared with a little SiO_2 . The α - Al_2O_3 phase can also be observed in Fig. 1(c).

Fig. 2 shows the bulk densities of Al₂O₃–CaSiO₃ ceramics sintered at different temperatures with different CaSiO₃ additions. It is clear that with increasing the sintering temperature, the densities of all bulks increase to a maximum value and then decrease. The optimal sintering temperature of Al₂O₃ ceramics with 2 wt%, 5 wt%, 10 wt%, 20 wt% and 30–40 wt% CaSiO₃ addition were 1550 °C, 1475 °C, 1400 °C, 1325 °C and 1300 °C, and the maximum bulk densities at these temperatures were 3.82 g/cm³, 3.74 g/cm³, 3.65 g/cm³, 3.49 g/cm³, 3.31 g/cm³ and 3.17 g/cm³, respectively. These results indicated that both the sintering temperature and the maximum density of Al₂O₃–CaSiO₃ ceramics were decreasing with the increasing of CaSiO₃ addition. However, because of the sintering temperature of pure CaSiO₃ ceramic was higher than 1300 °C [15], the sintering temperature could not be lowered

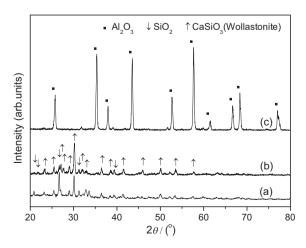


Fig. 1. XRD patterns of (c) Al_2O_3 powders and $CaCO_3$ – SiO_2 powders calcined at (a) 1100 °C and (b) 1200 °C.

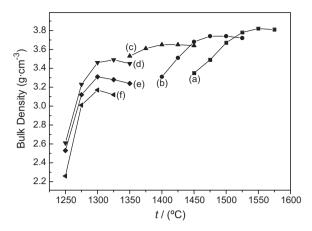


Fig. 2. Bulk densities of Al_2O_3 — $CaSiO_3$ ceramics sintered at different temperatures with (a) 2 wt%, (b) 5 wt%, (c) 10 wt%, (d) 20 wt%, (e) 30 wt% and (f) 40 wt% $CaSiO_3$ additions.

down any more when the CaSiO₃ addition exceeded 30 wt%. The theoretical density of Al₂O₃ ceramic and CaSiO₃ ceramic was 3.98 g/cm³ and 2.91 g/cm³, respectively, which resulted in the decreasing of bulk density with the higher CaSiO₃ addition.

Fig. 3 shows the X-ray diffraction patterns of Al₂O₃-CaSiO₃ ceramics with different CaSiO₃ additions sintered at different temperatures. With 2 wt% CaSiO₃ addition, the primary crystal phase of Al₂O₃ was obtained, and a little SiO₂, Ca₂Al₂SiO₇ and CaAl₂Si₂O₈ were observed, which suggested that the reaction between Al₂O₃ and CaSiO₃ resulted in the emergence of Ca₂Al₂SiO₇ and CaAl₂Si₂O₈. With the CaSiO₃ addition increasing, the diffraction peaks of Al₂O₃ were weakened, and the peaks of Ca₂Al₂SiO₇ and CaAl₂Si₂O₈ were enhanced. When the addition of CaSiO₃ was up to 40 wt%, the Ca₂Al₂SiO₇ was the main phase, and the Al₂O₃ was the minor phase. Combining with the results of Fig. 2, it is obvious that the decrease of sintering temperatures with the increase of CaSiO₃ addition was due to the increase of Ca₂Al₂SiO₇ and CaAl₂Si₂O₈ phases, which promoted the sintering process of Al₂O₃ ceramic as liquid sintering aids.

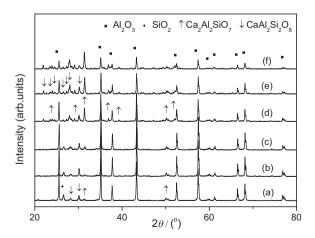


Fig. 3. XRD patterns of Al_2O_3 – $CaSiO_3$ ceramics with different $CaSiO_3$ additions sintered at different temperatures (a) 2 wt% × 1550 °C, (b) 5 wt% × 1475 °C, (c) 10 wt% × 1400 °C, (d) 20 wt% × 1325 °C, (e) 30 wt% × 1300 °C and (f) 40 wt% × 1300 °C.

The microstructures of Al₂O₃–CaSiO₃ ceramics with different CaSiO₃ additions sintered at the optimal temperature are presented in Fig. 4. From picture (a), dense bodies with few pores are obtained, and the average grain is about 2–3 μm with 2 wt% CaSiO₃ addition. Picture (b) and picture (c) show that the grains become smaller with the increase of CaSiO₃ additions from 2 wt% to 10 wt%, due to the new phases of CaAl₂Si₂O₈ and Ca₂Al₂SiO₇ which stopped the growing of Al₂O₃ grains by surrounding the boundaries. Upon increasing CaSiO₃ from 20 wt% to 40 wt%, picture (d), picture (e) and picture (f) present the grains grow with the augment of Ca₂Al₂SiO₇ and CaAl₂Si₂O₈, and there are many pores in these bulks. These results indicated that Ca₂Al₂SiO₇ and CaAl₂Si₂O₈ melted and improved the sintering process as liquid sintering aids.

Fig. 5 demonstrates the dielectric constant (ε_r) of Al₂O₃–CaSiO₃ ceramics with different amount of CaSiO₃ additions as a function of their sintering temperatures. From the figure, it can be clearly seen that the dielectric constants increase to a maximum value and then decrease with the sintering temperature rising, and the maximum ε_r of Al₂O₃–CaSiO₃ ceramics with 2 wt%, 5 wt%, 10 wt%, 20 wt% and 30–40 wt% CaSiO₃ additions were 9.88, 9.85, 9.52, 9.36, 8.93 and 8.57, respectively. The relationships between ε_r and sintering temperatures revealed the same trend with those between densities and sintering temperatures, due to a fact that a higher density signified a lower porosity and the dielectric constant of CaSiO₃ ceramic was lower than that of Al₂O₃ ceramic.

The quality values $(Q \times f)$ of Al_2O_3 – $CaSiO_3$ ceramics with different amount of $CaSiO_3$ additions sintered at different

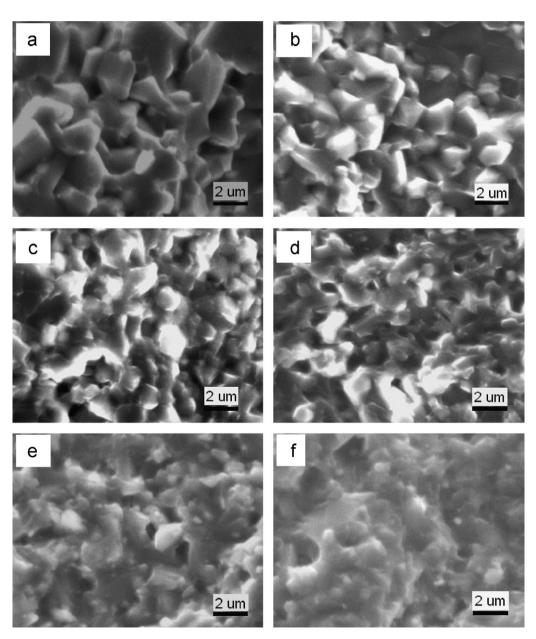


Fig. 4. SEM micrographs of Al_2O_3 –CaSiO $_3$ ceramics with different CaSiO $_3$ additions sintered at different temperatures (a) 2 wt% \times 1550 °C, (b) 5 wt% \times 1475 °C, (c) 10 wt% \times 1400 °C, (d) 20 wt% \times 1325 °C, (e) 30 wt% \times 1300 °C and (f) 40 wt% \times 1300 °C.

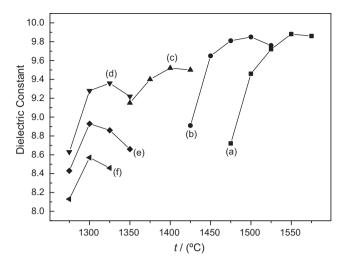


Fig. 5. Dielectric constants of Al_2O_3 –CaSiO $_3$ ceramics sintered at different temperatures with (a) 2 wt%, (b) 5 wt%, (c) 10 wt%, (d) 20 wt%, (e) 30 wt% and (d) 40 wt% CaSiO $_3$ additions.

temperatures are illustrated in Fig. 6. The optimal $Q \times f$ value of Al₂O₃-CaSiO₃ ceramics with 2 wt%, 5 wt%, 10 wt%, 20 wt% and 30-40 wt% CaSiO₃ additions were 28,923 GHz, 20,146 GHz, 16,782 GHz, 13,678 GHz, 9914 GHz and 8712 GHz, separately, which indicated that the addition of CaSiO₃ was harmful to increasing the quality value of Al₂O₃– CaSiO₃ ceramics. Compared with the report that the $Q \times f$ value of CaSiO₃ ceramic sintered at 1340 °C was 13,109 GHz [15], the Al₂O₃-CaSiO₃ ceramics with 30-40 wt% CaSiO₃ additions have lower quality values. These results suggested that the Ca₂Al₂SiO₇ and CaAl₂Si₂O₈ phases have lower quality values than CaSiO₃ phase, although it was advantageous to lower the sintering temperature of Al₂O₃ ceramic. The Al₂O₃-CaSiO₃ ceramic with 20 wt% CaSiO₃ addition possessed dielectric properties: $\varepsilon_r = 9.36$ and $Q \times f = 13,678$ GHz, which was a better result than that of pure CaSiO₃ ceramic at the similar sintering temperature.

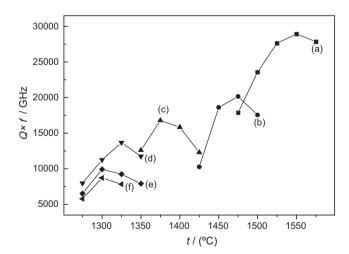


Fig. 6. $Q \times f$ values of Al_2O_3 –CaSiO $_3$ ceramics sintered at different temperatures with (a) 2 wt%, (b) 5 wt%, (c) 10 wt%, (d) 20 wt%, (e) 30 wt% and (d) 40 wt% CaSiO $_3$ additions.

4. Conclusion

Added 2–40 wt% CaSiO₃ into Al₂O₃, the CaSiO₃ phase was not detected in the ceramics sintered at 1300-1550 °C, but existed as Ca₂Al₂SiO₇ and CaAl₂Si₂O₈ phases, which acting as liquid sintering aids can effectively lower the sintering temperature of Al₂O₃ ceramic. However, the CaSiO₃ addition damaged the dielectric properties of Al₂O₃-CaSiO₃ ceramics, and the $O \times f$ value decreased from 28,923 GHz to 8712 GHz with the addition of CaSiO₃ increased from 2 wt% to 40 wt%. Compared with the pure CaSiO₃ ceramic, the Al₂O₃-CaSiO₃ ceramics with 2-20 wt% CaSiO₃ additions have better microwave dielectric properties, although the Ca₂Al₂SiO₇ and CaAl₂Si₂O₈ phases have lower quality values. Sintered at 1325 °C, The Al₂O₃-CaSiO₃ ceramic with 20 wt% CaSiO₃ addition possessed dielectric properties: $\varepsilon_r = 9.36$ and $Q \times f = 13,678$ GHz, which was a better result than that of pure CaSiO₃ ceramic at the similar sintering temperature.

Acknowledgements

This work was partially supported by Project of New Century Excellent Talents in University (Grant No. NCET-07-0786), the Science and Technology of Zhejiang Province (Grant No. 2008C21054), the Science and Technology Innovative Research Team of Zhejiang Province (No. 2009R50010) and the Zhejiang Science and Technology Innovation Projects for students.

References

- [1] H. Su, S.H. Wu, Studies on the (Mg, Zn)TiO₃-CaTiO₃ microwave dielectric ceramics, Mater. Lett. 59 (18) (2005) 2337–2341.
- [2] P.S. Anjana, T. Joseph, M.T. Sebastian, Low temperature sintering and microwave dielectric properties of Ce₂(WO₄)₃ ceramics, Ceram. Int. 36 (5) (2010) 1535–1540.
- [3] R. Freer, F. Azough, Microstructural engineering of microwave dielectric ceramics, J. Eur. Ceram. Soc. 28 (7) (2008) 1433–1441.
- [4] M. Kono, H. Takagi, T. Tatekawa, H. Tamura, High Q dielectric resonator material with low dielectric constant for millimeter-wave applications, J. Eur. Ceram. Soc. 26 (10–11) (2006) 1909–1912.
- [5] K.X. Song, S.Y. Wu, X.M. Chen, Effect of Y₂O₃ addition on microwave dielectric characteristics of Al₂O₃ ceramics, Mater. Lett. 61 (16) (2007) 3357–3360.
- [6] S.J. Penn, A. Templeton, X.R. Wang, M.S. Xu, M. Reece, K. Schrapel, N.M. Alford, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, J. Am. Ceram. Soc. 80 (7) (1997) 1885– 1888.
- [7] C.L. Huang, J.J. Wang, F.S. Yen, C.Y. Huang, Microwave dielectric properties and sintering behavior of nano-scaled ($\alpha + (\theta)$ -Al₂O₃ ceramics, Mater. Res. Bull. 43 (6) (2008) 1463–1471.
- [8] L. Gao, J.S. Hong, H. Miyamoto, S.D.D.L. Torre, Bending strength and microstructure of Al_2O_3 ceramics densified by spark plasma sintering, J. Eur. Ceram. Soc. 20 (12) (2000) 2149–2152.
- [9] C.S. Nordahl, G.L. Messing, Sintering of α-Al₂O₃-seeded nanocrystalline γ-Al₂O₃ powders, J. Eur. Ceram. Soc. 22 (4) (2002) 415–422.
- [10] N.M. Alford, S.J. Penn, Sintered alumina with low dielectric loss, J. Appl. Phys. 80 (10) (1996) 5895–5898.
- [11] C.L. Huang, J.J. Wang, C.Y. Huang, Sintering behavior and microwave dielectric properties of nano alpha-alumina, Mater. Lett. 59 (28) (2005) 3746–3749.

- [12] C.F. Yang, Y.C. Chen, W.C. Tzou, S.L. Chang, Sintering and microwave dielectric characteristics of MCAS glass-added 0.84Al₂O₃–0.16TiO₂ ceramics, Mater. Lett. 57 (19) (2003) 2945–2949.
- [13] S.O. Yoon, S.H. Shim, K.S. Kim, J.G. Park, S. Kim, Low-temperature preparation and microwave dielectric properties of ZBS glass–Al₂O₃ composites, Ceram. Int. 35 (2009) 1271–1275.
- [14] Y. Dai, T. Guo, X.M. Pei, W. Chen, Effects of MCAS glass additives on dielectric properties of Al_2O_3 – TiO_2 ceramics, Mater. Sci. Eng. A475 (1–2) (2008) 76–80.
- [15] H.P. Wang, Q.L. Zhang, H. Yang, H.P. Sun, Synthesis and microwave dielectric properties of CaSiO₃ nanopowder by the sol-gel process, Ceram. Int. 34 (2008) 1405–1408.