

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 37 (2011) 1341-1344

Developing the properties of new blue phosphors: TiO₂-doped Zn₂SiO₄

Wen-Cheng Tzou a, Chien-Chen Diao b, Cheng-Fu Yang c,*, Chin-Guo Kuo d, Chien-Jung Huang e

^a Department of Electro-Optical Engineering, Southern Taiwan University, Tainan, Taiwan, ROC
^b Department of Electronic Engineering, Kao Yuan University, Kaohsiung, Taiwan, ROC
^c Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, Taiwan, ROC
^d Department of Industrial Education, National Taiwan Normal University, Taipei, Taiwan, ROC
^e Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan, ROC
Received 18 October 2010; received in revised form 5 November 2010; accepted 14 December 2010

Available online 21 January 2011

Abstract

 $2ZnO + SiO_2 + X mol\% TiO_2 (Zn_2SiO_4-X-TiO_2, 1 \le X \le 3)$ and $2ZnO + SiO_2 + 3 mol\% MnO_2 (Zn_2SiO_4-3-TiO_2)$ compositions were prepared using nanoscale ZnO, SiO₂, TiO₂, and MnO₂ particles. The mixing powders were calcined between $1000 \,^{\circ}C$ and $1300 \,^{\circ}C$ in a N₂ atmosphere. Zn₂SiO₄ was the only phase in the calcined Zn₂SiO₄-X-TiO₂ phosphors. We found that the photoluminescence (PL) properties of synthesized Zn₂SiO₄-X-TiO₂ phosphors revealed these to be blue rather than green. The effects of TiO₂ content and calcining temperature on the PL properties of Zn₂SiO₄-X-TiO₂ phosphors were rigorously investigated.

© 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: C. Optical properties; Nanostructures; Photoluminescence spectroscopy

1. Introduction

White LEDs hold great potential for application in flat-panel displays, as rapid progress has been made in their material design and fabrication [1]. Among the inorganic phosphors, Zn₂SiO₄-Mn⁺² is a green phosphor well known for its high luminescence efficiency and excellent color purity [2,3]. To date, a great deal of effort has been put into investigating the photoluminescence (PL) properties of rare earth ions (Tb⁺³, Eu⁺³) doped in Zn₂SiO₄ phosphors, in order to examine their applications in such areas as field emission displays, plasma display panels, and thin-film electroluminescence devices [4]. In addition to such green phosphors, many other materials have been investigated as blue phosphors, including Eu⁺²-doped BaMgAl₁₄O₂₃ [5] and BaMgAl₁₀O₁₇ particles [6]. So far, no reports have investigated the PL properties of TiO₂-doped Zn₂SiO₄ phosphors. We have found that Zn₂SiO₄-X-TiO₂ particles are blue phosphors rather than green. In the present study, we examine the effects of TiO₂ content and calcining temperature on the PL properties of Zn₂SiO₄-X-TiO₂ phosphors.

2. Experimental procedures

Nanoscale SiO2, ZnO, TiO2, and MnO2 particles were weighed according to the composition formula 2ZnO+- $SiO_2 + X mol\% TiO_2 (Zn_2SiO_4-X-TiO_2, where 1 < X < 3)$ and $2ZnO + SiO_2 + 3 mol\% MnO_2 (Zn_2SiO_4-3-MnO_2)$. The average particle sizes of spherical SiO₂, spherical TiO₂, and irregular ZnO powders were approximately 23 nm, 12 nm, and 72 nm, respectively. The diameter and length distributions of tube-type MnO₂ particles were 15–25 nm and 300–800 nm, respectively. After being mixed in acetone and dried, the compositions were calcined from 1000 °C to 1300 °C for 2 h in a N₂ atmosphere. The crystalline phases of the calcined particles were analyzed using X-ray diffraction (XRD) patterns. PL properties were recorded in the wavelength range of 250–700 nm on a Hitachi F-4500 fluorescence spectrophotometer, equipped with an emitting light at an excitation wavelength of 215 nm for Zn₂SiO₄-X-TiO₂ particles and 254 nm for Zn₂SiO₄-3-MnO₂ particles.

3. Results and discussion

The XRD patterns of $\rm Zn_2SiO_4$ -X-TiO₂ phosphors are illustrated in Fig. 1 as a function of calcining temperature. With calcining at 1000 $^{\circ}$ C, no secondary phases or raw material

^{*} Corresponding author. Tel.: +886 7 5919283; fax: +886 7 5919277. E-mail address: cfyang@nuk.edu.tw (C.-F. Yang).

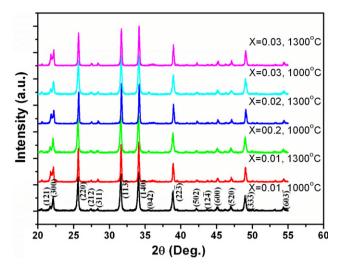


Fig. 1. XRD patterns of calcined Zn₂SiO₄-X-TiO₂ particles.

When Zn₂SiO₄-1-TiO₂ phosphor is calcined at various temperatures, the logarithmic curves do not readily reveal the differences in maximum emission intensities. To accomplish this, Fig. 2 uses single exponential and non-normalized curves to reveal the PL emission spectra. The emission intensity of

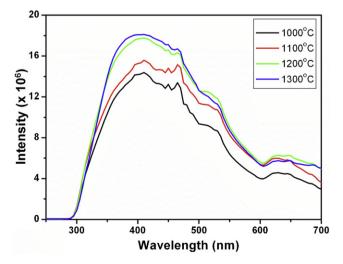


Fig. 2. PL emission spectra of $\rm Zn_2SiO_4$ -1- $\rm TiO_2$ phosphor (excitation wavelength 215 nm) as a function of calcining temperature.

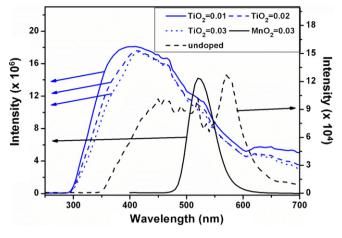


Fig. 3. PL emission spectra of 1300 $^{\circ}$ C-calcined Zn₂SiO₄-*X*-TiO₂ phosphors (excitation wavelength 215 nm) and Zn₂SiO₄-3-MnO₂ phosphor (excitation wavelength 254 nm).

 Zn_2SiO_4 -1-TiO₂ phosphor increases with increasing calcining temperature, independent of TiO₂ content. As calcining temperature increases from $1000\,^{\circ}C$ to $1300\,^{\circ}C$, the main wavelength of the emission light undergoes a small shift from 406 nm to 409 nm. Thus, the synthesized Zn_2SiO_4 -X-TiO₂ phosphors emit blue rather than green light.

Fig. 3 also uses single exponential and non-normalized curves to reveal the emission spectra, because the maximum emission intensities differ widely between undoped $\rm Zn_2SiO_4$ and $\rm Zn_2SiO_4\text{-}X\text{-}TiO_2$ (or $\rm Zn_2SiO_4\text{-}3\text{-}MnO_2$) phosphors. The $1300\,^{\circ}\text{C}\text{-}\text{calcined}\,\,\text{Zn}_2\text{SiO}_4\text{-}3\text{-}MnO_2$ phosphor has the strongest emission spectrum and the only emission band around 525 nm (excitation wavelength 254 nm, maximum emission intensity, $\rm PL_{max},\ 1.42\times10^7$). For $\rm Zn_2SiO_4$ particles in the absence of MnO_2 and TiO_2 dopants a low $\rm PL_{max}$ is observable (excitation wavelength 215 nm, $\rm PL_{max}$ 1.6 \times 10⁴). A strong blue emission spectrum (excitation wavelength 215 nm, $\rm PL_{max}$ 1.72–1.80 \times 10⁷) is observable in the 1300 °C-calcined Zn₂SiO₄-1-TiO₂ phosphor. The PL_{max} of the Zn₂SiO₄-X-TiO₂ phosphors

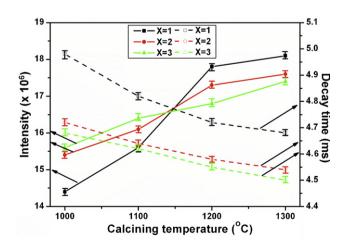


Fig. 4. Emission intensities and decay times of Zn₂SiO₄-X-TiO₂ phosphors as a function of calcining temperature.

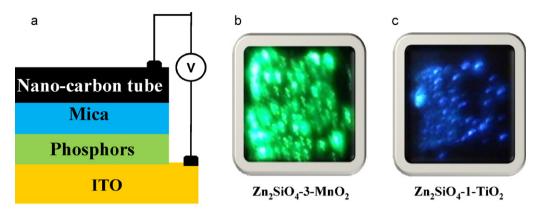


Fig. 5. Photographs of the EL properties of (b) green light emission phosphor $(Zn_2SiO_4-3-MnO_2)$ and (c) blue light emission phosphor $(Zn_2SiO_4-1-TiO_2)$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

is higher than that of Zn_2SiO_4 -3-MnO₂ phosphor and much higher than that of undoped Zn_2SiO_4 phosphor. Apparently, the variations in the luminescence peaks from green light to blue are attributable to using TiO_2 as the dopant in the willemite Zn_2SiO_4 crystal structure. The configurations of the PL emission spectra in all the Zn_2SiO_4 -X- TiO_2 phosphors were similar apart from small red-shifting in the strongest emission band. The results presented in Figs. 2 and 3 prove that the Zn_2SiO_4 -X- TiO_2 particles will produce new blue phosphors, although the mechanism is not yet fully known.

The PL_{max} values of Zn_2SiO_4 -X-TiO₂ phosphors are presented in Fig. 4 as a function of calcining temperature. The PL_{max} increases with rising calcining temperature, and the maximum PL_{max} occurs for particles calcined at 1300 °C. Based on our SEM observations, we think this is the result of the Zn_2SiO_4 -X-TiO₂ particle sizes increasing with rising calcining temperature. The intensity decay of the PL process can be expressed as follows:

$$I_{\rm em} = I_0 \exp\left(-\frac{t}{\tau}\right) \tag{1}$$

where the lifetime τ refers to the time required for the intensity to drop to I_0/e , I_0 is the initial intensity, and I_{em} is the intensity at time t. Fig. 4 also shows that the lifetimes of Zn₂SiO₄-X-TiO₂ phosphors decrease with increasing calcining temperature and TiO₂ content. The calcined Zn₂SiO₄-X-TiO₂ phosphors exhibit decay lifetimes extending from 4.50 ms to 4.98 ms. In Zn₂SiO₄-MnO₂ phosphors, if too much MnO₂ dopant is added a concentration quenching effect occurs, with resulting degeneration of the emission intensity and decay time [7]. As the Mn⁺² dopant concentration and the calcining temperature increase, the chance for MnO (or MnO₂) to substitute for ZnO increases and the concentration of Mn⁺² ions increases. Energy transfer between Mn⁺² and Mn⁺² ions is expected to happen, which will take the excitation energy too far from the absorption location. The Zn⁺² ions potentially lose their excitation at quenching time, leading to a concentration quenching effect. In this study, it is believed that the addition of TiO2 into Zn₂SiO₄ formed Ti⁺⁴ ions, and that the concentration of Ti⁺⁴ ions rose as TiO₂ content and calcining temperature increased. This concentration quenching effect would also occur in Zn₂SiO₄-X-TiO₂ phosphors, which is why the emission intensity degenerated with increasing TiO₂ content at calcining temperatures of 1200 °C and 1300 °C, and the decay time shortened as the TiO₂ content and calcining temperature increased.

Fig. 4 reveals another important result—the PL_{max} of $1000\,^{\circ}\text{C}$ -calcined Zn_2SiO_4 -X- TiO_2 phosphors is 80% higher than that of $1300\,^{\circ}\text{C}$ -calcined phosphors. These results also prove that high-efficiency Zn_2SiO_4 -X- TiO_2 phosphors are obtainable using nanoparticles as precursors, because Ti^{+4} ions easily occupy the sites of Zn^{+2} ions and lead to highly efficient PL properties. Figs. 5(b) and (c) presents photographs of the electroluminescent properties of $1300\,^{\circ}\text{C}$ -calcined Zn_2SiO_4 -3- MnO_2 and Zn_2SiO_4 -1- TiO_2 phosphors, respectively, excited by the electrical-voltage-biased structure shown in Fig. 5(a). Images (b) and (c) prove that we have developed Zn_2SiO_4 -based phosphors with different luminescence properties by adding different dopants.

4. Conclusions

In this study, we prepared $\rm Zn_2SiO_4\text{-}X\text{-}TiO_2$ phosphors with satisfactory blue photoluminescence properties. As the calcining temperature was increased from 1000 °C to 1300 °C, the wavelength of the emission light for $\rm Zn_2SiO_4\text{-}X\text{-}TiO_2$ phosphors shifted from 406 nm to 409 nm. The phosphors decay lifetimes ranged from 4.50 ms to 4.98 ms, and decreased with increasing calcining temperature and $\rm TiO_2$ content.

Acknowledgements

The authors will acknowledge to the help of Mr. Jia-Yun Kao in experimental process and financial support of NSC 99-2221-E-390-013-MY2.

References

 C.D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, et al., Multi-colour organic light-emitting displays by solution processing, Nature 421 (2003) 829–833.

- [2] S. Nakajima, M. Tamatani, in: S. Shionoya, W.M. Yen (Eds.), Phosphor Handbook, CRC Press, Boca Raton, FL, 1999 (Chapter 18).
- [3] C.C. Diao, C.F. Yang, Synthesis of high efficiency Zn₂SiO₄:Mn²⁺ green phosphors using nano-particles, Ceramics International 36 (2010) 1653–1657.
- [4] V. Natarajana, K.V.R. Murthy, M.L. Jayanth Kumar, Photoluminescence investigations of Zn₂SiO₄ co-doped with Eu³⁺ and Tb³⁺ ions, Solid State Communications 134 (2005) 261–264.
- [5] S. Zhang, Y. Hou, H. Fujii, T. Onishi, M. Kokubu, M. Obata, H. Tanno, et al., Effect of nonstoichiometry on the deterioration of Eu²⁺-doped
- hexagonal aluminate phosphor for plasma display applications, Japanese Journal of Applied Physics 42 (2003) 477–480.
- [6] I.Y. Jung, Y. Cho, S.G. Lee, S.H. Sohn, K.D. Kim, D.K. Lee, et al., Intense red-emitting Y₄Al₂O₉:Eu³⁺ phosphor with short decay time and high color purity for advanced plasma display panel, Applied Physics Letters 87 (2005) 191908.
- [7] A. Manavbasi, J.C. LaCombe, Synthesis of pure Zn₂SiO₄:Mn green phosphors by simple PVA-metal complex route, Journal of Materials Science 42 (2007) 252–258.