

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 38 (2012) 443-447

Enhanced photoluminescence property of Dy³⁺ co-doped BaAl₂O₄:Eu²⁺ green phosphors

Hee-Suk Roh^a, In-Sun Cho^b, Jae-Sul An^c, Chin Moo Cho^a, Tae Hoon Noh^a, Dong Kyun Yim^a, Dong-Wan Kim^{d,*}, Kug Sun Hong^{a,**}

a Department of Materials Science & Engineering, Seoul National University, Shillim-dong, San 56-1, Gwanak-gu, Seoul 151-744, Republic of Korea
 b Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
 c LCD Division, Samsung Electronics Co., Maetan 3-dong, Yeongtong-gu, Suwon 443-742, Republic of Korea
 d Department of Materials Science & Engineering, Ajou University, Woncheon-dong, San 5, Yeongtong-gu, Suwon 443-749, Republic of Korea
 Received 13 June 2011; received in revised form 11 July 2011; accepted 12 July 2011
 Available online 23rd July 2011

Abstract

Eu²⁺-doped BaAl₂O₄ green phosphors were prepared by a conventional solid-state reaction and the effects of Dy³⁺ co-doping on the photoluminescence property were investigated. The phosphors were characterized by X-ray powder diffraction (XRD), fluorescence spectroscopy, field-emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS). XRD showed that all prepared samples exhibited a hexagonal BaAl₂O₄ phase. Fluorescence spectroscopy showed that the photoluminescence efficiency increased with increasing Eu²⁺ concentration until 3 mol% then decreased at higher concentrations due to concentration quenching effect. Moreover, Dy³⁺ co-doping increased the photoluminescence efficiency of the Eu²⁺-doped BaAl₂O₄ phosphor.

© 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: BaAl₂O₄:Eu²⁺; Phosphor; Optimum concentration; Dy³⁺ co-doping effects; Photoluminescence

1. Introduction

The photoluminescence of Eu²⁺-doped alkaline earth aluminates, MAl₂O₄:Eu²⁺ (M = Ca, Sr, Ba) phosphor in the visible region has attracted considerable attention in recent years owing to their chemically stable and very strong photoluminescence properties [1–3]. Moreover, there have been extensive investigations on their applications to the next generation of displays and lighting devices [4–6]. In particular, BaAl₂O₄:Eu²⁺ had attracted interest on account of its good photoluminescence characteristics, such as high initial luminescent intensity, long lasting time, suitable emitting color and chemical stability [1,7–11].

Generally, it is well known that co-doped rare earth ions, such as Ce³⁺ and Dy³⁺, in Eu²⁺ doped aluminate phosphors allow the formation of electron traps [12,13]. For example, in

the SrAl₂O₄:Eu²⁺ green phosphor, co-doped Dy³⁺ produces electron traps and increases the phosphorescence properties via a "holes trapped–transported–detrapped process" [14]. Many studies have examined the effect of Dy³⁺ co-doping on the phosphorescence of BaAl₂O₄:Eu²⁺ phosphors [7,8,15]. However, to the best of our knowledge, there are no reports on the optimum concentration of Eu²⁺ and the effect of Dy³⁺ co-doping on the photoluminescence property in BaAl₂O₄:Eu²⁺ phosphors.

Herein, we prepared the Eu²⁺-doped and Eu²⁺, Dy³⁺-co-doped BaAl₂O₄ phosphors with different doping concentrations. The phase stability and microstructural homogeneity were presented based on the analysis of the XRD and FESEM. Furthermore, the optimum concentration of Eu²⁺ and the effect of Dy³⁺ co-doping on the photoluminescence property were suggested and discussed.

2. Experimental procedure

All Eu²⁺-doped and Eu²⁺, Dy³⁺-co-doped BaAl₂O₄ phosphors were prepared by a solid-state reaction. Stoichiometric

^{*} Corresponding author. Tel.: +82 31 219 2468; fax: +82 31 219 1612.

^{**} Corresponding author. Tel.: +82 2 880 8024; fax: +82 2 886 4156.

E-mail addresses: dwkim@ajou.ac.kr (D.-W. Kim),
kshongss@plaza.snu.ac.kr (K.S. Hong).

amounts of the raw materials, BaCO₃ (Cerac, 99.9%), Al₂O₃ (High Purity Chemicals, 99.9%), Eu₂O₃ (High Purity Chemicals, 99.9%) and Dy₂O₃ (Cerac, 99.9%), were mixed by ball milling for 24 h and then dried rapidly in an oven. The asprepared powders were calcined in air at 1300 °C for 4 h. After calcination, all samples were grinded very well by a mortar and re-heated in a forming gas (95% Ar + 5% H₂) at 1600 °C for 12 h to reduce Eu³⁺ to Eu²⁺.

Powder X-ray diffraction (XRD, D8-Advance, Bruker Miller Co.) was used for crystal phase identification. The photoluminescence (PL) spectra were taken on a LS-55 (PerkinElmer) fluorescence spectrometer equipped with a Xenon lamp light source. The morphology and the phosphor size were observed by field-emission scanning electron microscopy (FESEM, JSM-6330F, JEOL). X-ray photoelectron spectroscopy (XPS) was performed using a Sigma Probe (Thermo VG) X-ray photoelectron spectrometer equipped with monochromatic Al-Kα X-ray radiation source (15 kV). The binding energy scale of the XPS data was calibrated at the C 1s peak position, ideally at 284.6 eV.

3. Results and discussion

3.1. Optimum concentration of Eu²⁺ in BaAl₂O₄ phosphor

A series of samples were initially prepared to examine the optimum doping concentration of Eu^{2+} on the photoluminescence efficiency of $BaAl_2O_4$ phosphors. Fig. 1 shows XRD patterns of the as-prepared $BaAl_2O_4$: Eu^{2+} phosphors with different Eu^{2+} concentrations. The XRD patterns of all samples exhibited a phase-pure hexagonal $BaAl_2O_4$ phase (JCPDS Card #17-0306) without $BaAl_{12}O_{19}$ which was often observed as a major second phase.

Fig. 2 shows the PL spectra of the as-prepared BaAl₂O₄:Eu²⁺ phosphors with different Eu²⁺ concentrations at room temperature. The excitation and emission spectra of all samples

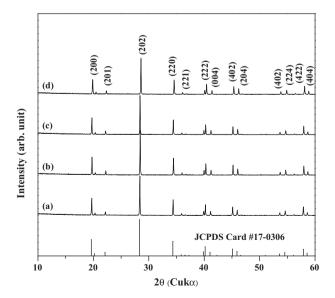


Fig. 1. XRD patterns of the $BaAl_2O_4$ phosphors with different Eu^{2+} concentrations. (a) 1 mol%, (b) 3 mol%, (c) 5 mol% and (d) 7 mol%.

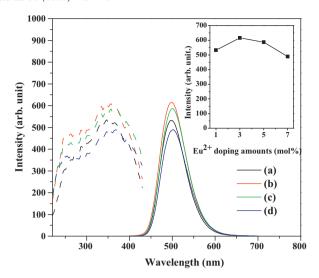


Fig. 2. Photoluminescence (PL) spectra of the $BaAl_2O_4$: Eu^{2+} phosphors with different Eu^{2+} concentrations. (a) 1 mol%, (b) 3 mol%, (c) 5 mol% and (d) 7 mol%.

were similar to those reported in the literature [16], *i.e.*, the maximum wavelengths of the excitation and emission were approximately 355 nm and 499 nm, respectively. The single and symmetric emission peak was observed for each sample, which corresponds to only one Ba^{2+} site preferentially occupied by Eu^{2+} ions in the $\mathrm{BaAl_2O_4}$ structure and the straightforward $4f^65d^1 \to 4f^7$ transition of Eu^{2+} ion [17]. The PL intensity increased with increasing Eu^{2+} concentration until the optimum Eu^{2+} concentration was reached with a decrease at higher concentrations due to concentration quenching [18,19]. The optimum Eu^{2+} concentration was 3 mol%.

3.2. The effect of Dy^{3+} co-doping on the photoluminescence property

Using the above optimum Eu²⁺ ion concentration, additional Dy³⁺ ions were co-doped in the BaAl₂O₄:Eu²⁺ phosphors in order to examine the effect of Dy³⁺ ion co-doping on the photoluminescence property. Fig. 3 shows XRD patterns of Eu²⁺, Dy³⁺-co-doped samples. As shown in the figure, all the diffraction peaks index well to the hexagonal BaAl₂O₄ phase. No significant differences in the peak position or broadening of the reflections were observed for all samples, which indicate structural stability irrespective of co-doping.

Fig. 4 shows the PL spectra of the as-prepared $\mathrm{Eu^{2+}}$, $\mathrm{Dy^{3+}}$ -co-doped $\mathrm{BaAl_2O_4}$ phosphors. The PL emission intensities initially increased with increasing $\mathrm{Dy^{3+}}$ concentration, reaching a maximum value at 1 mol% of $\mathrm{Dy^{3+}}$ content. However, the PL intensity decreased by further increase in $\mathrm{Dy^{3+}}$ concentration due to the concentration quenching effect [18,19].

Generally, the emission intensity (photoluminescence efficiency) of a phosphor is affected mainly by two factors: intrinsic factors (doping concentration, crystallization degree and crystal structure, etc.) and extrinsic factors (morphology, size and surface property, etc.) [20–25]. The differences in the extrinsic factors in Eu²⁺, Dy³⁺-co-doped BaAl₂O₄ phosphors

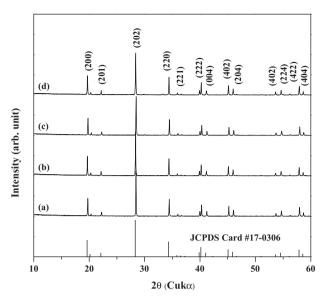


Fig. 3. XRD patterns of $BaAl_2O_4$: Eu^{2+} phosphors with different Dy^{3+} concentrations (the concentration of Eu^{2+} was fixed at 3 mol%). (a) 0 mol%, (b) 1 mol%, (c) 2 mol% and (d) 2.5 mol%.

were examined based on the microstructural analysis. Fig. 5 shows the FESEM images of Eu^{2+} , Dy^{3+} -co-doped $BaAl_2O_4$ phosphor samples. As shown in the figure, the morphology and particle size (ca. 3–5 μ m) of all phosphors were similar, and the particles showed a smooth surface. Therefore, it is expected that the extrinsic factors in Eu^{2+} , Dy^{3+} -co-doped $BaAl_2O_4$ phosphor samples are negligible.

The intrinsic factors such as crystal structure, stress/strain in the BaAl₂O₄ lattice, and degree of crystallization were not

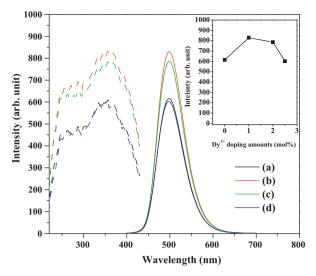


Fig. 4. PL spectra of BaAl₂O₄:Eu²⁺ (3 mol%) phosphors with different Dy³⁺ concentrations. (a) 0 mol%, (b) 1 mol%, (c) 2 mol% and (d) 2.5 mol%.

critical factors between different samples for enhancing the emission intensity of the Dy^{3+} co-doped $\mathrm{BaAl_2O_4}$ phosphors, as described in the XRD analyses (Figs. 1 and 3). To further examine the intrinsic factors, the XPS spectra were investigated to determine the chemical and binding state of the surface, which possibly affects the emission intensity of a phosphor, as shown in Fig. 6. The Eu $3d_{5/2}$ core level in the XPS spectra for the $\mathrm{Eu^{2+}}$ and $\mathrm{Eu^{3+}}$ ions were clearly different from each other [26,27]. As expected, there was only one Eu $3d_{5/2}$ peak at ~ 1136 eV (unfortunately, Dy $4d_{5/2}$ core level XPS spectra could not be obtained due to the small concentrations in our

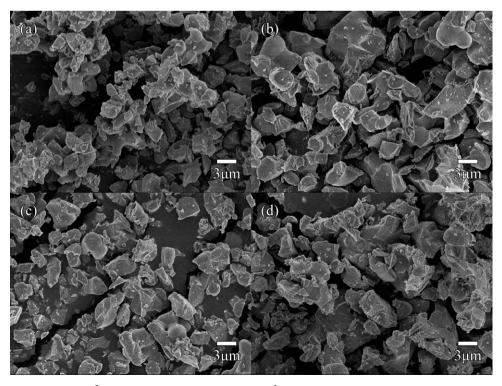


Fig. 5. FESEM images of the BaAl₂O₄:Eu²⁺ (3 mol%) phosphors with different Dy³⁺ concentrations. (a) 0 mol%, (b) 1 mol%, (c) 2 mol% and (d) 2.5 mol%.

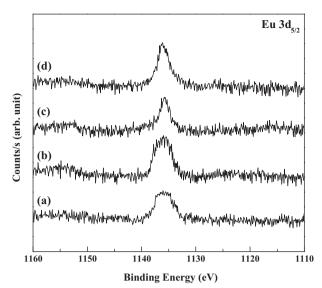


Fig. 6. Eu 3d XPS spectra of the $BaAl_2O_4$: Eu^{2+} (3 mol%) phosphors with different Dy^{3+} concentrations. (a) 0 mol%, (b) 1 mol%, (c) 2 mol% and (d) 2.5 mol%.

XPS analysis). Although the position of this peak was higher than the reported value for Eu²⁺ ions, this peak was assigned to the Eu²⁺ ions because the characteristic emission peaks of Eu³⁺ ions were not observed in the PL spectra (Fig. 4). Moreover, the intensity of the Eu 3d_{5/2} peaks was similar. Thus, it was also confirmed that one of important intrinsic factors, the presence of Eu³⁺ can be excluded [17]. According to previous reports, one possible reason for enhancement of emission intensity of the Eu²⁺, Dy³⁺-co-doped BaAl₂O₄ phosphors can be a decrease in the number of traps [28]. In the case of the Eu²⁺-doped phosphor, the traps are the anion vacancies (oxygen vacancies in BaAl₂O₄:Eu²⁺ phosphor) located near the activator [28]. The luminescence efficiency of the Eu²⁺-doped phosphor could be increased if the number of oxygen vacancies located near the activator is decreased. Therefore, it is suggested that Dy3+ codoping enables a decrease in the number of oxygen vacancies located near Eu²⁺ during the heat-treatment, which results in a decrease in the number of traps (oxygen vacancies in BaAl₂O₄:Eu²⁺ phosphor), offering a positive effect on enhancing the emission intensity in the Eu²⁺ and Dy³⁺ codoped BaAl₂O₄ phosphors though further detailed analyses are needed [12].

4. Conclusion

Eu²⁺-doped BaAl₂O₄ green phosphors were prepared by a conventional solid-state reaction and the effect of Dy³⁺ codoping on the photoluminescence property was investigated. The optimum Eu²⁺ concentration was 3 mol%. Moreover, Dy³⁺ co-doping induced an increase in the photoluminescence efficiency of Eu²⁺-doped BaAl₂O₄ phosphor. When the doping concentrations of Eu²⁺ and Dy³⁺ are 3 mol% and 1 mol%, respectively, Eu²⁺, Dy³⁺-co-doped BaAl₂O₄ phosphor has the maximum emission intensity. The phase stability and microstructural homogeneity were almost identical for Eu²⁺-doped

and Eu²⁺, Dy³⁺-co-doped BaAl₂O₄ phosphors with different doping concentrations. Further studies on intrinsic factors such as a decrease in the number of traps by co-doping will be needed in detail to obtain possible mechanism for effective enhancement of the emission intensity.

Acknowledgements

This work was partly supported by the IT R&D program of MKE/IITA [2009-F-020-01, Development of Red nitride phosphor and self-assembly phosphorescent layer packaging technology for high rendition LED illumination] and Ajou University research fellowship of 2010 (S-2010-G0001-00059).

References

- D. Ravichandran, S.T. Johnson, S. Erdei, R. Roy, W.B. White, Crystal chemistry and luminescence of the Eu²⁺-activated alkaline earth aluminate phosphors, Displays 19 (1999) 197–203.
- [2] H. Yamamoto, S. Okamoto, H. Kobayashi, Luminescence of rare-earth ions in perovskite-type oxides: from basic research to applications, J. Lumin. 100 (2002) 325–332.
- [3] Z. Qiu, Y. Zhou, M. Lu, A. Zhang, Q. Ma, Combustion synthesis of long-persistent luminescent MAl₂O₄:Eu²⁺, R³⁺ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research, Acta Mater. 55 (2007) 2615–2620.
- [4] H. Chang, I.W. Lenggoro, T. Ogi, K. Okuyama, Direct synthesis of barium magnesium aluminate blue phosphor particles via a flame route, Mater. Lett. 59 (2005) 1183–1187.
- [5] D. Wang, Q. Yin, Y. Li, M. Wang, Concentration quenching of Eu^{2+} in $SrO\cdot Al_2O_3:Eu^{2+}$ phosphor, J. Lumin. 97 (2002) 1–6.
- [6] T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, R. Valtonen, Eu²⁺ doped calcium aluminates prepared by alternative low temperature routes, Opt. Mater. 26 (2004) 113–116.
- [7] R. Sakai, T. Katsumata, S. Komuro, T. Morikawa, Effect of composition on the phosphorescence from BaAl₂O₄:Eu²⁺, Dy³⁺ crystals, J. Lumin. 85 (1999) 149–154.
- [8] T. Katsumata, R. Sakai, S. Komuro, T. Morikawa, H. Kimura, Growth and characteristics of long duration phosphor crystals, J. Cryst. Growth 198–199 (1999) 869–871.
- [9] Y. Lin, Z. Zhang, Z. Tang, J. Zhang, Z. Zheng, X. Lu, The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu₂O₃ and Dy₂O₃, Mater. Chem. Phys. 70 (2001) 156–159.
- [10] K.-T. Lee, P.B. Aswath, Synthesis of hexacelsian barium aluminosilicate by a solid-state process, J. Am. Ceram. Soc. 83 (2000) 2907–2912.
- [11] C. Zhang, L. Wang, L. Cui, Y. Zhu, A novel method for the synthesis of nano-sized BaAl₂O₄ with thermal stability, J. Cryst. Growth 255 (2003) 317–323
- [12] L. Xingdong, M. Zhong, R. Wang, Roles of Eu²⁺, Dy³⁺ ions in persistent luminescence of strontium aluminates phosphors, J. Wuhan Univ. Technol. Mater. Sci. Ed. 23 (2008) 652–657.
- [13] Y. Ding, Y. Zhang, Z. Wang, W. Li, D. Mao, H. Han, C. Chang, Photoluminescence of Eu single doped and Eu/Dy codoped Sr₂Al₂SiO₇ phosphors with long persistence, J. Lumin. 129 (2009) 294–299.
- [14] F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, T. Le Mercier, Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu²⁺-doped SrAl₂O₄ with codopants Dy³⁺ and B³⁺, Chem. Mater. 17 (2005) 3904–3912.
- [15] K.S. Bartwal, H. Ryu, Long persistence in Sr/BaAl₂O₄:Eu²⁺:Dy³⁺ green phosphor, Resour. Process. 55 (2008) 120–123.
- [16] F.C. Palilla, A.K. Levine, M.R. Tomkus, Fluorescent properties of alkaline earth aluminates of the type MAl₂O₄ activated by divalent europium, J. Electrochem. Soc. 115 (1968) 642–644.

- [17] L.C.V. Rodrigues, R. Stefani, H.F. Brito, M.C.F.C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, M. Malkamäki, Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaA-l₂O₄:Eu²⁺,Dy³⁺, J. Solid State Chem. 183 (2010) 2365–2371.
- [18] G.C. Righini, M. Ferrari, Photoluminescence of rare-earth-doped glasses, Riv. Nuovo Cimento 28 (2005) 1–53.
- [19] M. Mattarelli, M. Montagna, A. Chiasera, M. Ferrari, L. Zampedri, G.C. Righini, L.M. Fortes, M.C. Gonçalves, L.F. Santos, R.M. Almeida, Selfabsorption and radiation trapping in Er³⁺-doped TeO₂-based glasses, Europhys. Lett. 71 (2005) 394–399.
- [20] G. Li, Q. Cao, Z. Li, Y. Huang, Luminescence properties of YAl₃(BO₃)₄ phosphors doped with Eu³⁺ ions, J. Rare Earths 26 (2008) 792–794.
- [21] M. Hirayama, N. Sonoyama, A. Yamada, R. Kanno, Structural investigation of Eu²⁺ emissions from alkaline earth zirconium phosphate, J. Solid State Chem. 182 (2009) 730–735.
- [22] X. He, W. Li, Q. Zhou, Hydrothermal synthesis and tunable luminescent properties of Sr_{2-x}Dy_xCeO₄ rod-like phosphors derived from co-precipitation precursors, Mater. Sci. Eng. B 134 (2006) 59–62.

- [23] E.T. Goldburt, B. Kulkami, R.N. Bhargava, J. Taylor, M. Libera, Size dependent efficiency in Tb doped Y₂O₃ nanocrystalline phosphor, J. Lumin. 72–74 (1997) 190–192.
- [24] M.S. Chung, M.J. Jeon, S.C. Lee, B.K. Kang, H.J. Kim, S.S. Yang, J.S. Kim, Y.J. Ahn, Effect of single crystalline MgO powder treatment of phosphor surface on discharge property of high-Xe AC plasma display panels, Displays 28 (2007) 68–73.
- [25] K.Y. Jung, C.H. Lee, Y.C. Kang, Effect of surface area and crystallite size on luminescent intensity of Y₂O₃:Eu phosphor prepared by spray pyrolysis, Mater. Lett. 59 (2005) 2451–2456.
- [26] W.-D. Schneider, C. Laubschat, I. Nowik, G. Kaindl, Shake-up excitations and core-hole screening in Eu systems, Phys. Rev. B 24 (1981) 5422–5425.
- [27] M. Han, S.-J. Oh, J.H. Park, H.L. Park, X-ray photoelectron spectroscopy study of CaS:Eu and SrS:Eu phosphors, J. Appl. Phys. 73 (1993) 4546–4549.
- [28] F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, M.-H. Whangbo, Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration, Chem. Mater. 18 (2006) 3212–3220.