

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICS INTERNATIONAL

Ceramics International 38 (2012) 2079-2085

www.elsevier.com/locate/ceramint

Pressureless sintered SiC matrix toughened by *in situ* synthesized TiB₂: Process conditions and fracture toughness

Wei Wang, Jingbao Lian, Hongqiang Ru*

School of Materials and Metallurgy, Northeastern University, Shenyang 110004, China

Received 12 June 2011; received in revised form 20 September 2011; accepted 17 October 2011

Available online 23 October 2011

Abstract

This paper reports the fabrication of SiC toughened by *in situ* synthesized TiB₂ based on pressure-less sintering technique using TiO₂, B₄C, C and SiC as starting materials. The process conditions were investigated in detail, including the pre-sintering temperatures, carbon contents, differently sized TiO₂ powders, TiB₂ volume contents, final sintering temperature and time. These conditions were found to have great influence on the TiB₂ toughened SiC in terms of relative density, TiB₂ particle size and fracture toughness. Homogeneous dispersion of *in situ* synthesized TiB₂ secondary phase was confirmed to enhance the K_{IC} of the SiC matrix. The K_{IC} of SiC toughened by *in situ* synthesized TiB₂ (15 vol%) reaches 6.3 MPa m^{1/2}, which is among the highest values reported so far on TiB₂ reinforced SiC composites based on the pressure-less sintering technique using TiO₂ as Ti source.

© 2011 Published by Elsevier Ltd and Techna Group S.r.l.

Keywords: A. Sintering; B. Composites; C. Toughness and toughening; D. SiC

1. Introduction

Silicon carbide (SiC) is one kind of high-performance structural ceramic, famous for its low density, high strength and hardness, good oxidation resistance, high thermal conductivity and low thermal expansion coefficient, high strength even at high temperatures. But the low fracture toughness (K_{IC}) of SiC, 3-4 MPa m^{1/2}, make itself very sensitive to defects and therefore less reliable in application. Therefore, great attention has been paid to enhance the fracture toughness of SiC. In previous studies, it has been found that the incorporation of some secondary phases, serving as crack deflector, can greatly enhance the fracture toughness of SiC matrix [1-5]. For example, when 24.6 vol% TiC phases were introduced into SiC, the fracture toughness of the composite can reach 6.0 MPa m^{1/2} [3]. Similarly, Endo et al. fabricated 20-40 vol% TiC reinforced SiC by hot-pressing method with enhanced fracture toughness up to 6.0 MPa m^{1/2} [4].

Besides the TiC phase, TiB₂ in many cases has also been used to reinforce the SiC since TiB₂ is also an important

structural ceramic due to its exceptional hardness, elastic modulus, high melting point, good corrosion resistance to chemicals and molten metal, etc. McMurty et al. reported that the inclusion of ${\rm TiB_2}$ phases can effectively suppress the growth of SiC crystals and thus remarkably enhance the fracture toughness [2].

Compared with the pre-formed TiB2 powders, the in situ synthesized TiB₂ phases have some advantages to reinforce the SiC as they can be facilely and homogeneously dispersed in the SiC matrix [6–12]. With respect to the toughening effect of in situ synthesized TiB2 on SiC matrix, Zhang et al. reported that K_{IC} of 6.21 MPa m^{1/2} can be obtained by hot pressing method when 30 vol% of TiB₂ was incorporated [9]. The K_{IC} of TiB₂ (30 vol%) reinforced SiC fabricated by hot isostatic pressing (HIP) method was 4.75 MPa m^{1/2} [8]. It is worthy to note that toughening the SiC matrix using in situ synthesized TiB2 via pressure-less sintering route [1,10-12] is also an attractive alternate to hot-pressing method [6–9], because the latter is expensive and not suitable to fabricate samples with sophisticated shapes. Using TiO₂ as Ti source and pressureless sintering method, Blanc et al. reported that the K_{IC} of the TiB₂/SiC composite with 15 vol% of TiB₂ is around 3.9 MPa m^{1/2} [11]. Very recently, based on the similar synthetic strategy but using Al₂O₃ and Y₂O₃ as sintering aids, the K_{IC} of

^{*} Corresponding author. Tel.: +86 24 83680248; fax: +86 24 83680248. *E-mail address:* ruhq@smm.neu.edu.cn (H. Ru).

about 4.3 MPa m^{1/2} and 5.7 MPa m^{1/2} were achieved with 12 vol% and 30 vol% of TiB₂, respectively [12].

As summarized in Table 1, currently there are several synthesis routes that can be followed to fabricate in situ synthesized TiB₂ toughened SiC. In comparison with other titanium sources employed in these synthetic routes, including Ti, TiC, TiH₂ and TiN, titanium dioxide (TiO₂) is cheap and extensively available. It would be very appealing to synthesize in situ TiB₂ from TiO₂. Despite above works dealing with the preparation of in situ synthesized TiB₂ reinforced SiC [10–12], up to now it is still lack of a systematic investigation on the process conditions and their influence on the fracture toughness of the composite ceramics. This work is thus intended to shed light on the process conditions with an aim to obtain TiB₂/SiC composites with enhanced fracture toughness. This work is supposed to provide an overall picture of in situ synthesized TiB₂ reinforced SiC using cheap TiO₂ as Ti source based on the pressure-less sintering technique.

2. Experimental procedure

2.1. Materials

 $\alpha\text{-SiC}$ powders (0.4 $\mu m)$ were bought from Hongde Fine Powders Ltd., Weifang, China; TiO $_2$ powders (74 $\mu m)$ and nano-sized TiO $_2$ (20 nm) were purchased from Fe Alloy Factory, Jinzhou, China; B $_4$ C powders (3.5 $\mu m)$ were obtained from Friction Materials 2nd Factory, Mudanjiang, China. The phenol resin and ethanol were purchased from the Sinopharm Chemical Reagent Co., Ltd. All the chemicals are used as received.

2.2. Synthesis procedure

The synthesis procedure includes five steps: mixing by ball-milling, drying, granulation, molding and pressure-less sintering. Typically, in order to prepare TiB₂ (15 vol%)-SiC, 80.0 g SiC, 23.0 g TiO₂, 9.0 g B₄C and 29.2 g phenol resin were ball milled in ethanol for 12 h. After drying, granulation and screening, batches of powders were compacted by cold uniaxial pressing at a pressure of 150 MPa into rectangular shape green compacts

Table 1 Reactions for the *in situ* synthesis of TiB₂.

No.	Reactions	Ref.
1	$TiC + 2B \to TiB_2 + C$	[6]
2	$TiN+2B\rightarrowTiB_2+0.5N_2$	[7]
3	$2Ti+Si+B_4C\rightarrow SiC+2TiB_2$	[8]
4	$2TiH_2 + Si \ + \ B_4C \rightarrow 2TiB_2 + SiC \ + \ 2H_2$	[9]
5	$2 TiO_2 + B_4C + 3C \rightarrow 2 TiB_2 + 4CO$	[10–12]

with approximate dimensions of $37.5 \text{ mm} \times 6 \text{ mm} \times \text{h} \text{ mm}$. The dried samples were pre-sintered at various temperatures in vacuum (<100 Pa) before being sintered at final temperatures for different durations in argon finally.

2.3. Characterization

The microstructures of obtained TiB₂/SiC composite ceramics were examined by scanning electron microscopy (SEM, JSM-5600LV). The phase compositions were studied using D/Max-YX X-ray diffractometer. The porosity was measured by Archimedes' method. The mechanical properties were tested on mechanical testing machine (CMT5105).

The fracture toughness was measured by using the indentation method using Vicker's indenter, which is simple and has been used in many works on TiB₂ toughened SiC materials [6,8,11,12]. Therefore, this work employed this method to measure the facture toughness especially for direct comparison purpose. In this work, the equation used for calculation was proposed by Evans–Charles [11,13]:

$$K_{Ic} = 0.057 H_{\nu} a^{1/2} \left(\frac{E}{H_{\nu}}\right)^{2/5} \left(\frac{c}{a}\right)^{\frac{-3}{2}} \tag{1}$$

where E in Gpa is the Young's modulus (Young's moduli of SiC/TiB₂ composites were calculated from the Young's moduli of SiC (414 GPa) and TiB₂ (529 GPa), assuming a rule of mixture), The influence of porosity on the Young's modulus was further considered based on the model proposed by Pabst and Gregoroyá [14].

$$E = E_0 \times (1 - p) \times \left(1 - \frac{p}{p_c}\right) \tag{2}$$

where E and E_0 are the Young's modulus of porous (with porosity of p) and dense ceramics, respectively; p_c is the critical porosity at which the material looses integrity, is equal to 1. H_v in Gpa is the Vicker's hardness, a in μ m is the half-length of Vicker's print and c in μ m is the half-length of the crack.

3. Results and discussion

3.1. Optimization of the pre-sintering temperature and amounts of reactants

In the sintering process, the CO gas is released according to the reaction between TiO₂, B₄C and C, as shown in the reaction (R5) in Table 1. The release of CO is actually harmful to the densification of the TiB₂/SiC composite [10]. It is proposed that by means of pre-sintering treatment at relatively low temperatures in the vacuum (<100 Pa), it is possible to minimize this problem before sintering at the final temperature around 2000 °C (more details below). Although our previous calculation and experimental results showed that this reaction can take place at as low as 1100 °C under vacuum (<0.01 Pa) [15], the pre-sintering temperature of 1400 °C is chosen in view of both speeding up the reaction and saving energy under the condition employed in this work (see Section 2). As shown in

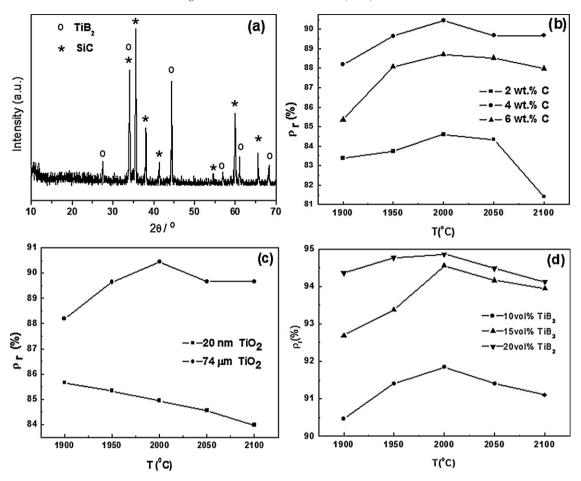


Fig. 1. (a) XRD pattern of pre-sintered samples obtained at $1400\,^{\circ}$ C, variation of relative densities of TiB₂/SiC composites sintered at different temperatures with (b) varying amounts of carbon with 5 vol% TiB₂ (micro-sized TiO₂, 74 μ m), (c) differently sized TiO₂ powder with 5 vol% TiB₂ (carbon content of 4 wt.%), and (d) TiB₂ volume contents with carbon content of 4 wt.% using micron-sized TiO₂.

Fig. 1a, the XRD pattern of the TiB_2/SiC composite is free of impurities except the TiB_2 and SiC phases, indicating the completion of transformation of TiO_2 into TiB_2 under such conditions.

In addition, the amount of carbon, derived from phenolic resin, is an important factor influencing both the reaction (Eq. (R5) in Table 1) and the sintering process. It is well known that the carbon can activate the SiO_2 or SiO_xC_y species formed on the SiC surface *via* carbothermal reduction reactions [16]. Therefore, besides the carbon necessary to complete the reaction (R5) in Table 1, an extra amount of carbon can promote the sintering the SiC in the final sintering step. Herein, the effect of the extra carbon on the densification of composite ceramics is investigated. As shown in Fig. 1b, irrespective of the sintering temperature, an extra carbon of 4.0 wt.% favors the formation of more dense ceramic composite. On the one hand, upon the addition of too much carbon, e.g., 6.0 wt.%, some of them will enrich in the grain boundaries. As a result, the contacts and following sintering of SiC crystals will be impeded. On the other hand, too less of carbon might compromise the activation effects of SiC surface, which is not advantageous to the sintering either. In the following discussion, the amount of extra carbon is thus set to be at 4.0 wt.% unless indicated otherwise.

In this work, two kinds of TiO₂ powders with different sizes were studied. It turns out that the nanosized TiO₂ is disadvantageous to the formation of highly densified TiB₂/SiC composite (Fig. 1c). This could be explained that the higher decomposition rate of nanosized TiO₂ at high temperatures or the agglomeration during the preparation could lead to these low densities. The micron-sized TiO₂ powders are therefore selected for the preparation of TiB₂/SiC composites.

Serving as the secondary phase to reinforce SiC, the content of TiB2 is no doubt a key factor and thus needs to be investigated and optimized in order to obtain the TiB2/SiC composite with enhanced fracture toughness. In this work, the effects of different amounts of in situ synthesized TiB2 on both the relative densities and microstructures of TiB₂/SiC composite ceramics were studied. The influence of TiB₂ volume contents on the densities of sintered TiB₂/SiC composites was shown in Fig. 1b and d. It can be seen that the relative densities of TiB₂/SiC composite are highly dependent on the volume contents of TiB2. The higher the TiB₂ volume contents are, the higher densities of the sintered TiB₂/SiC composites can be achieved. Although it has been recently reported that the utilisation of sintering aids, e.g., $Al_2O_3 + Y_2O_3$, was found to be able to further increase the relative density to around 97% [12], the highest relative density

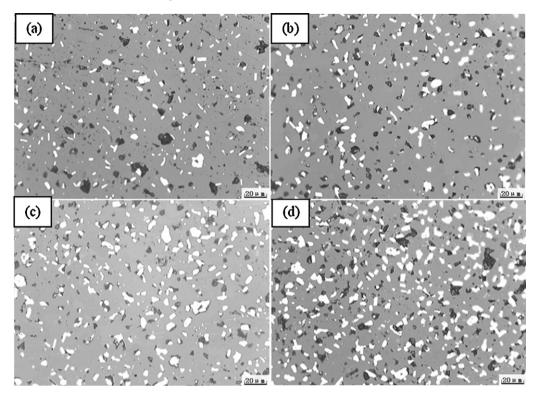


Fig. 2. Influence of TiB₂ volume contents on the microstructures of TiB₂/SiC composites sintered at 2000 °C with (a) 5 vol%, (b) 10 vol%, (c) 15 vol% and (d) 20 vol%.

up to 95% (20 vol% of TiB_2) obtained in this work is comparable with results reported by others using the same method [10]. Therefore, with increasing amounts of the TiB_2 , very fine, active *in situ* synthesized TiB_2 particles are demonstrated to be able to promote the sintering and therefore help densify the TiB_2/SiC composites.

The dependence of microstructures on the TiB_2 volume contents was shown in Fig. 2. With the increase in TiB_2 volume contents, the particle sizes (equivalent circle diameter) of *in situ* synthesized TiB_2 particles increased from $\sim 2.6~\mu m$ at 5.0~vol% to $3.9~\mu m$ at 20.0~vol%. The higher probability of contact and shorter distance between TiO_2 or *in situ* generated TiB_2 at high TiB_2 volume contents are responsible for such increase in TiB_2 particle sizes. It is worthy to note that TiB_2 phases are all homogeneously dispersed in the SiC matrix irrespective of the volume contents of TiB_2 phases in the range from 5.0~to 20.0~vol%. The existence of TiB_2 particle sized voids (black holes) is probably due to the falling of the TiB_2 particles during the preparation of sample for SEM measurements. Some finer voids are also observable due to the evolution of CO gas during the reaction as discussed above.

3.2. Influence of the sintering conditions on the microstructures

After pre-sintering at $1400 \,^{\circ}$ C, it is necessary to sinter the TiB₂/SiC composite at final temperatures to complete the densification process. It can be seen from Fig. 1b and d that the densities of TiB₂/SiC composite are highly dependent on the final sintering temperatures studied. Independent of the carbon

and TiB_2 contents, the optimal sintering temperature at 2000 °C leads to the most densified composite ceramics. With the increase in sintering temperatures ranging from 1900 °C to 2100 °C, the obvious growth of the TiB_2 particles can be observed in Fig. 3a and b. *Via* pressure-less sintering method, it is hard to completely remove these pores even after sintering at higher temperatures up to 2100 °C, which can be seen from the existence of some fine voids in Fig. 3a and b. This phenomenon was also observed by others in the TiB_2 reinforced SiC *via* pressure-less sintering method [12].

The average particle sizes of TiB₂ at 20.0 vol% increased from about 2.3 μ m to 4.5 μ m when the sintering temperatures were increased from 1950 to 2100 °C (Fig. 3c). Moreover, the grain size of the matrix discriminated by etching method was found to decrease with the increasing amount of TiB₂, suggesting the inhibiting effect of the in situ formed TiB2 on the grain size of the SiC matrix (Fig. 3d). This is in consistent with the results reported by others: the in situ synthesized TiB₂ can suppress growth of SiC matrix during the sintering process [2,12]. It is proposed that the TiB₂ in situ formed in the grain boundaries function as the SiC growth inhibitor, but the fine TiB₂ particle might also activate the SiC and therefore promote the sintering the SiC matrix by increasing the defects and inducing the distortion in the crystalline lattice, which in both cases have been confirmed by TEM observations (Fig. 4a and b). As shown in Fig. 4, very fine TiB₂ particles at the SiC boundaries or in the SiC grains can be observed. These observations also agree well with the results that the high relative densities can be achieved at higher TiB2 volume contents, as shown in Fig. 1d.

Fig. 3. Influence of sintering temperatures on the microstructures of TiB_2/SiC composites (20 vol% TiB_2) at (a) 1900 °C and (b) 2100 °C with the holding time of 0.5 h. (c) Plot of the average particle sizes of TiB_2 (20 vol%) against varying sintering temperature held for 0.5 h. (d) Plot of the grain size of the SiC matrix against TiB_2 contents sintered at 2000 °C for 0.5 h.

Additionally, the sintering time was found to be important for the final sintering step. As shown in Fig. 5, the optimum sintering time at $2000\,^{\circ}\text{C}$ for TiB_2/SiC composites with different TiB_2 volume contents is 0.5 h in terms of relative densities. Either too long or short sintering time is not

advantageous to the formation of dense TiB₂/SiC composites. On the one hand, excessive grain growth induced by lengthy sintering might envelop the porosities and cause the decrease in the relative densities. On the other hand, too short sintering time cannot fully densify the composite. Therefore, the sintering

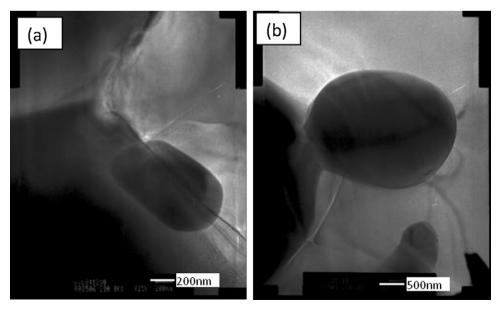


Fig. 4. Bright field images of (a) an intergranular TiB2 particle (darker particles) and (b) two intragranular TiB2 particles in SiC matrix.

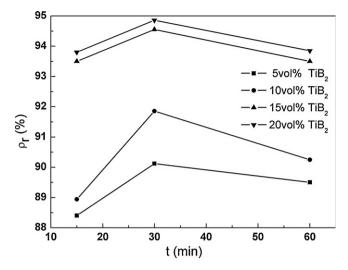


Fig. 5. The relationship between relative densities of TiB $_2$ /SiC composites and the holding time at 2000 $^\circ\text{C}.$

temperature and the holding time to sinter the TiB₂/SiC composite are set to be at 2000 °C and 0.5 h, respectively.

3.3. Fracture toughness of the TiB₂/SiC composites

Similar to the observation of TiC reinforced SiC [3,4], in the case of TiB₂, it has been reported that the fracture toughness

was not only higher than single phase of both SiC and TiB2 [9,11,17], but also was found to increase with the volume contents of TiB₂ [9,11]. In this work, when the volume contents of TiB₂ were increased from 5.0 vol% to 20.0 vol% as shown in Fig. 6a, the fracture toughness was found to correspondingly increase from 4.9 MPa m^{1/2} to 5.9 MPa m^{1/2}. By incorporating the TiB2 into the SiC matrix, the cracks can be deflected considerably. Consequently, their propagation can be suppressed in the TiB₂/SiC composites, which is otherwise not realizable in the monolithic SiC. On the one hand, with the increases in the TiB2 volume contents, the frequency of interaction of crack tip with the TiB2 particles increases, so does the fracture toughness (Fig. 6a). On the other hand, it was reported that the facture toughness was inversely proportional to the grain sizes of the matrix [18]. As shown in Fig. 3d, the grain sizes were found to decrease with the increase in the TiB₂ contents. Therefore, the increase in the TiB2 volume contents is also believed to be helpful to the enhancement of fracture toughness.

As shown above in Fig. 3c, higher final sintering temperatures results in larger TiB_2 particle sizes. The influence of the sintering temperatures on the fracture toughness was further studied, with the results shown in Fig. 6b. Clearly, the K_{IC} increases with the sintering temperatures in the range from 1900 °C to 2100 °C with 15 vol% TiB_2 . It was reported that the grain coarsening in particle sizes of the secondary phase leads

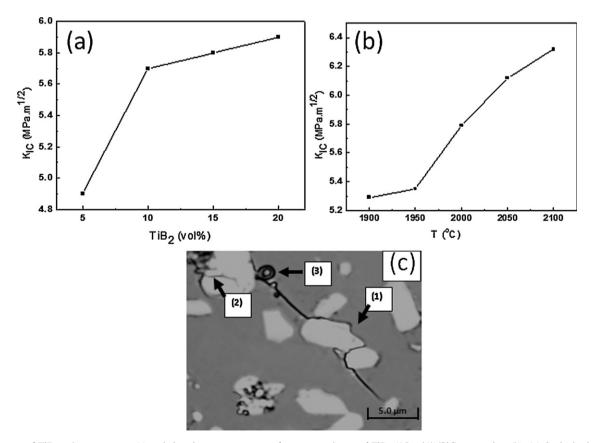


Fig. 6. Influence of TiB_2 volume contents (a) and sintering temperature on fracture toughness of TiB_2 (15 vol%)/SiC composites (b). (c) Optical micrographs of typical cracks paths induced by Vickers indentation: (1) crack deflection around TiB_2 particles, (2) TiB_2 particle sheared by a crack (cross over) and (3) the double crack deflection around TiB_2 particles.

to the increased fracture toughness, owing to the enhanced crack deflection [19]. In Fig. 6c, three kinds of cracks can be identified, including those around, cross over and double deflection around the TiB_2 particles. This explains the significantly enhanced K_{IC} compared with monolithic SiC.

When the TiB_2 (15.0 vol%)/SiC composite was sintered at 2100 °C, the highest K_{IC} can reach 6.3 MPa m^{1/2}, which nearly double the value of monolithic SiC, typically around 3–4 MPa m^{1/2} and is among the highest values reported so far on TiB_2 reinforced SiC composites based on the pressure-less sintering technique using TiO_2 as Ti source [8,9,11,12]. Such high fracture toughness obtained in this work is ascribed to the systematically optimized synthetic conditions, including the amounts of reactants (TiO_2 , carbon), pre-sintering conditions and final sintering conditions as well.

4. Conclusions

This paper demonstrated that the fabrication of in situ synthesized TiB₂ toughened SiC can be realized via a pressureless sintering technique using B₄C, C and SiC and cheap TiO₂ as starting materials. Detailed studies of the process conditions reveal that: (a) pre-sintering at temperatures of 1400 °C secures the complete transformation of TiO₂ into TiB₂. (b) The optimum carbon content apart from reaction consumption is 4.0 wt.%. (c) Compared with nano-sized TiO₂ powders, micron-sized TiO₂ powders favor the formation of more dense TiB₂/SiC ceramic composite. (d) The optimum final sintering condition is at 2000 °C with the holding time of 0.5 h. The TiB₂ phases of 5.0-20.0 vol% in volume contents can be homogeneously incorporated into the SiC matrix. The TiB₂ particles tend to coarsen in sizes with the increases in the volume contents of TiB₂ and the sintering temperatures as well. TiB₂ (15.0 vol%)/SiC composite sintered at 2100 °C showed the highest K_{IC} up to 6.3 MPa m^{1/2}.

Acknowledgements

This work was supported by NSF of China (50872018, 50902018), the State Key Basic Research Program of PRC (2009AA032501), the Fundamental Research Funds for the Central Universities (N100302001) and Innovative Research Team in University (IRT0713).

References

- M.H. Janney, Mechanical properties and oxidation behavior of a hot pressed SiC-15 vol% TiB₂ composite, Am. Ceram. Soc. Bull. 66 (1987) 322–324.
- [2] C.H. McMurty, W.D. Boecker, S.G. Seshadri, J.S. Zanghi, J. Garnier, Microstructure and materials properties of SiC-TiB₂ particulate composites, Am. Ceram. Soc. Bull. 66 (1987) 325–329.
- [3] G.C. Wei, P.F. Becher, Improvements in mechanical properties in SiC by addition of TiC particles, J. Am. Ceram. Soc. 67 (1984) 571–574.
- [4] H. Endo, M. Ueki, H.J. Kubo, Microstructure and mechanical properties of hot-pressed SiC-TiC composites, J. Mater. Sci. 26 (1991) 3769–3774.
- [5] I. Akin, M. Hotta, F.C. Sahin, O. Yucel, G. Goller, T. Goto, Microstructure and densification of ZrB₂–SiC composites prepared by spark plasma sintering, J. Eur. Ceram. Soc. 29 (2009) 2379–2385.
- [6] Y. Ohya, M.J. Hoffmann, G. Petzow, Sintering of in situ synthesized SiC— TiB₂ composites with improved fracture toughness, J. Am. Ceram. Soc. 75 (1992) 2479–2483.
- [7] T. Tani, S. Wada, SiC matrix composites reinforced with internal synthesized TiB₂, J. Mater. Sci. 25 (1990) 157–160.
- [8] D.G. Zhu, S.K. Liu, X.D. Yin, L. Yang, C.C. Xiao, H.M. Zhou, J.Y. Zhang, In situ HIP synthesis of TiB₂/SiC ceramic composites, J. Mater. Process. Technol. 89–90 (89) (1999) 457–460.
- [9] G.J. Zhang, X.M. Yue, Z.Z. Jin, J.Y. Dai, In situ synthesized TiB₂ toughened SiC, J. Eur. Ceram. Soc. 16 (1996) 409–412.
- [10] T. Tani, S. Wada, Pressureless-sintered SiC-TiB₂ composite through internal synthesis method, J. Mater. Sci. Lett. 9 (1999) 22–23.
- [11] C. Blanc, F. Thevenot, D. Goeuriot, Microstructural and mechanical characterization of SiC-submicron TiB₂ composites, J. Eur. Ceram. Soc. 19 (1999) 561–569.
- [12] D. Bucevac, S. Boskovic, B. Matovic, V. Krstic, Toughening of SiC matrix with in situ created TiB₂ particles, Ceram. Int. 36 (2010) 2181–2188.
- [13] P. Chantikul, G.R. Anstis, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness-II strength method, J. Am. Ceram. Soc. 64 (1981) 39–543.
- [14] W. Pabst, E. Gregorová, New relation for the porosity dependence of the effective tensile modulus of brittle materials, J. Mater. Sci. 39 (2004) 3501–3503.
- [15] P. Lu, X.Y. Yue, H.Q. Ru, L. Yu, Effect of TiB₂ in situ synthesized on presintering process and reaction of B₄C and Al during fabricating B₄C– TiB₂–Al composite, J. Mater. Sci. 44 (2009) 3483–3487.
- [16] K. Guerfi, S. Lagerge, M.J. Meziani, Y. Nedellec, G. Chauveteau, Influence of the oxidation on the surface properties of silicon carbide, Thermochim. Acta 434 (2005) 140–149.
- [17] G.J. Zhang, Y. He, Z.Z. Jin, Study on SiC matrix composites toughened by in situ synthesized TiB₂, J. Chin. Ceram. Soc. 23 (1995) 34–140 (in Chinese).
- [18] V.D. Krstic, Effect of microstructure on fracture of brittle materials: unified approach, Theor. Appl. Fract. Mech. 45 (2006) 212–226.
- [19] R.W. Rice, S.W. Freiman, P.F. Becher, Grain-size dependence of fracture energy in ceramics: I. Experimental, J. Am. Ceram. Soc. 64 (1981) 345–350.