

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICS INTERNATIONAL

Ceramics International 38 (2012) 2269-2276

www.elsevier.com/locate/ceramint

Phase evolution and thermal behaviors of the solid-state reaction between SrCO₃ and Al₂O₃ to form SrAl₂O₄ under air and CO₂-air atmospheres

Yu-Lun Chang a, Hsing-I Hsiang a,*, Ming-Tsai Liang b, Fu-Su Yen a

^a Particulate Materials Research Center, Department of Resources Engineering, National Cheng Kung University, No.1, University Road, 70101 Tainan, Taiwan, ROC

^b Department of Chemical Engineering, I-Shou University, Kaoshiung 840, Taiwan, ROC

Received 7 October 2011; received in revised form 26 October 2011; accepted 27 October 2011 Available online 4 November 2011

Abstract

The solid-state reactions between $SrCO_3$ and Al_2O_3 forming $SrAl_2O_4$ under air and CO_2 -air atmospheres were investigated. The solid-state reaction between $SrCO_3$ and Al_2O_3 under a CO_2 atmosphere can be separated into multiple reaction stages. The first stage is attributed to the formation of $SrAl_2O_4$ resulting from the reaction between $SrCO_3$ and Al_2O_3 . The diffusion of Al_2O_3 through the product layer then takes place to continue the reaction. At a higher temperature, the $Sr_3Al_2O_6$ formation reaction occurs due to the chemical reaction between $SrCO_3$ and $SrAl_2O_4$. The $SrCO_3$ is thermally finally decomposed. The resulting SrO may diffuse rapidly through the product layer, producing pure $SrAl_2O_4$ formation via a complicated diffusion process at a much higher temperature. These reaction stages occur at very close temperatures under an air atmosphere, leading to a complex reaction between the solids in air.

© 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Calcination; A. Powders: solid state reaction; B. Defects; C. Diffusion; SrAl₂O₄

1. Introduction

Strontium mono-aluminate, SrAl₂O₄, is a promising host material for luminescent appliances. Various optical properties can be achieved by doping rare earth ions or transition metal ions within the structure [1–3]. SrAl₂O₄ is a thermodynamically stable compound that possesses the stuffed tridymite structure. This structure is built by AlO₄⁵⁻ tetrahedra and Sr²⁺ ions stuffed into the framework interstices. It has two crystalline phases, monoclinic and hexagonal, with a reversible transformation temperature of about 650 °C. SrAl₂O₄ can be synthesized using many methods, such as the combustion method [4], spray pyrolysis [5], sol–gel route [6], Pechini process [7], and solid-state process [8,9]. Because of its' low manufacturing costs and convenient operation, SrAl₂O₄ is usually prepared using the conventional solid-state reaction.

The solid-state synthesis of SrAl₂O₄ is usually carried out using SrCO₃ and Al₂O₃ as the raw materials. The solid-state

reaction between SrCO₃ and Al₂O₃ to form SrAl₂O₄ was investigated by Zaki et al. [10]. Their kinetic data indicates that the reaction is controlled by the diffusion model and SrO diffusion through the product layer is suggested. Camby and Thomas investigated the interfacial reaction between BaCO₃ and Al₂O₃ using diffusion couples [11] and observed that BaAl₂O₄ was the only product resulting at 900 °C. After calcination for 5 days, Ba₃Al₂O₆ was further observed located at the interface between BaCO₃ and BaAl₂O₄. Another product, BaAl₁₂O₁₉, was also formed at the interface between BaAl₂O₄ and Al₂O₃. They considered that the Ba₃Al₂O₆ nucleation was attributed to the dissolution of interstitial Ba²⁺ within the BaAl₂O₄ structure, and could grow as long as the reaction persisted. The formation of BaAl₁₂O₁₉ was not elucidated. However, a composition with a large departure from stoichiometry in the BaAl₁₂O₁₉ layer was observed. Moreover, Gulgun et al. [12] used a chemical method to synthesize CaAl₂O₄ and observed that the activation energy in CaAl₂O₄ formation is comparable to that of Ca²⁺ diffusion in CaO, but far from the Al³⁺ diffusion in Al₂O₃. Therefore, the nucleation mechanism of CaAl₂O₄ is controlled by the diffusion of Ca²⁺ and the growth of CaAl₂O₄ is further dominated by Ca²⁺

^{*} Corresponding author. Tel.: +886 6 2757575x62821; fax: +886 6 2380421. *E-mail address*: hsingi@mail.ncku.edu.tw (H.-I. Hsiang).

diffusing through the product layer toward Al_2O_3 . Thus, it can be concluded that the solid-state reaction to form stuffed tridymite, MAl_2O_4 , M = Ca, Sr, or Ba, is usually dominated by the diffusion of M^{2+} ions.

In our previous study, Al^{3+} ions diffused was observed in the reaction system for $SrAl_2O_4$ formation [13]. The high temperature hexagonal $SrCO_3$ and hexagonal $SrAl_2O_4$ phases stabilized at room temperature are suggested to incorporate the excess Al_2O_3 into the $SrCO_3$ and $SrAl_2O_4$ lattices resulting from Al^{3+} ion diffusion. This indicates that the solid-state reaction between $SrCO_3$ and Al_2O_3 is a complicated reaction mechanism rather than a simple process. In order to understand the reaction mechanism more completely, the solid-state reaction between $SrCO_3$ and Al_2O_3 was carried out under air and CO_2 atmospheres. The phase evolution and reaction mechanisms were carefully investigated using DTA/TG, XRD and TEM to propose a possible reaction mechanism.

2. Experimental

 $SrCO_3$ (Aldrich, 99.99%) and α -Al₂O₃ (Alfa Aesar, 99.9%) were mixed at a stoichiometic ratio by magnetically stirring the aqueous solution for 4 h. The pH value of the aqueous solution was adjusted to 9.5 by adding NH₄OH. After mixing, the obtained mixtures were dried and calcined at different temperatures. The crystalline phases of the samples were determined using X-ray diffractometry (Siemens, D5000, Karlsruhe, Germany) with Cu- K_{α} radiation. TEM (Jeol, JEM-3010, Tokyo, Japan) was used to observe the crystallite size and morphology. The diffraction patterns of the crystalline species were obtained using TEM with a camera constant of 80 cm. Semi-quantitative determination of the element content was detected using EDS (Noran, Voyager 1000, Waltham, MA) attached to the TEM. The DTA/TG analysis was performed using a thermal analysis instrument (Netzsch STA, 409 PC, Burlington, MA) under 40 ml/min flow rate of carrier gas.

3. Results and discussion

3.1. The phase evolution

Fig. 1 shows XRD patterns of the mixture calcined at 980 $^{\circ}$ C under atmospheres with different CO₂ concentrations. The monoclinic SrAl₂O₄ and the Sr₃Al₂O₆ were observed in the sample calcined in air. As the CO₂ concentration was increased to 3 vol% CO₂, hexagonal SrCO₃ and hexagonal SrAl₂O₄ were formed while Sr₃Al₂O₆ started to appear. By increasing the CO₂ concentration, the amount of Sr₃Al₂O₆ formation gradually decreased. Above 10 vol% CO₂, only hexagonal SrCO₃ and hexagonal SrAl₂O₄ were observed. This indicates that the phase evolution between SrCO₃ and Al₂O₃ is significantly influenced by the CO₂ partial pressure.

In the previous study [13], stabilized hexagonal $SrCO_3$ and hexagonal $SrAl_2O_4$ were also observed in the sample calcined using a covered crucible. It is supposed that the CO_2 gas accumulation in the covered crucible provided a CO_2 atmosphere. The stabilizations of hexagonal $SrCO_3$ and hexagonal

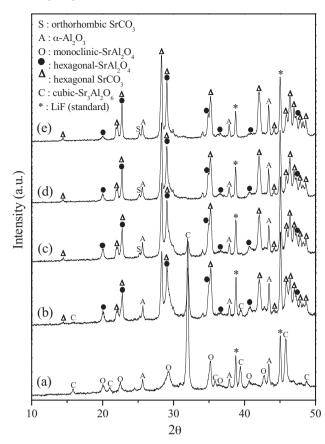


Fig. 1. XRD patterns of the SrCO₃ and Al_2O_3 mixture calcined at 980 °C without soaking under atmospheres with different CO₂ concentration, (a) in air, (b) 3 vol%, (c) 5 vol%, (d) 10 vol%, and (e) 20 vol%.

SrAl₂O₄ were attributed to Al₂O₃ incorporation. The incorporation of excess Al₂O₃ into the SrAl₂O₄ structure is suggested to increase the oxygen vacancy concentration. The resulting oxygen vacancy can stabilize the high temperature hexagonal SrAl₂O₄ at room temperatures [14,15]. The increase in crystal volume due to the transformation from orthorhombic to hexagonal SrCO₃ may introduce Al₂O₃ diffusion into the interstices, which may raise the internal strain energy and suppress the reversible phase transformation of SrCO₃. Therefore, the high temperature hexagonal SrCO₃ phase can be retained at room temperature. A metastable SrCO₃ phase was also obtained by quenching from the phase transition temperature using the admixture of a few mol% of BaSO₄. The incorporation of SO_4^{2-} in the host structure was triggered by the SrCO₃ phase transformation [16]. This observation is consistent with the fact that Al3+ ion diffusion into the SrCO3 lattice is promoted by the SrCO₃ transformation from the orthorhombic into the hexagonal.

Lander investigated the crystal structure of SrCO₃ at 920 °C and observed that the lattice parameters of the hexagonal SrCO₃ crystal were a = 5.092 Å and c = 9.53 Å and the most intense X-ray diffraction occurred at $2\theta = 27.66$ [17]. However, the most intense XRD peak in the stabilized hexagonal SrCO₃ occurred at $2\theta = 28.34$ in this study. This is probably due to the crystal distortion in the hexagonal crystal structure. The Miller indices of the diffraction peaks for the resulting hexagonal

Table 1
Miller indices of the diffraction peaks for the resulting hexagonal SrCO₃ based on the XRD result.

2θ	d spacing (1/Å)	h k l
14.478	6.138	002
21.898	4.055	003
22.097	4.018	100
22.728	3.909	101
28.343	3.148	102
29.953	2.981	004
35.212	2.547	103
42.082	2.146	110

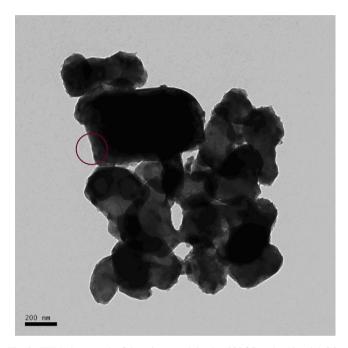


Fig. 2. TEM photograph of the mixture calcined at 980 $^{\circ}\mathrm{C}$ under 10 vol% CO₂ atmosphere.

SrCO₃ based on the XRD result are shown in Table 1. The lattice parameters of this stabilized structure are suggested to be a=3.99~Å and c=10.49~Å. Fig. 2 shows a TEM photograph of the SrCO₃ and Al₂O₃ mixture calcined at 980 °C under 10 vol% CO₂ atmosphere. The loosely packed particles with size around 200–400 nm are ascribed to Al₂O₃ using EDS confirmation. The selected area diffraction pattern and the EDS result for a larger particle with a particle size around 800 nm are shown in Fig. 3. The stabilized hexagonal SrCO₃ particles can be assigned based on the TEM diffraction pattern, which coincides well with the proposed diffraction index. Moreover, additional Al content was also observed in this area, indicating the existence of Al₂O₃ within the structure.

3.2. The thermal behaviors

Fig. 4 shows DTA/TG curves of the $SrCO_3$ and Al_2O_3 mixture in air. About four endothermic peaks from the DTA curve are observed starting at $800\,^{\circ}$ C, $890\,^{\circ}$ C, $930\,^{\circ}$ C, and $980\,^{\circ}$ C. The sharpest peak at $930\,^{\circ}$ C is ascribed to the $SrCO_3$ phase transformation from orthorhombic to hexagonal [17]. The other peaks, which correspond to a multiple step weight loss in the same temperature range, can be attributed to the chemical reaction involving $SrCO_3$ of the samples. The total weight loss levels off at around $1020\,^{\circ}$ C.

Thermal analyses of the $SrCO_3$ and Al_2O_3 mixtures were performed to investigate the possible solid state. Fig. 5 shows the DTG curves of the $SrCO_3$ and Al_2O_3 mixtures, $SrCO_3$ and $SrAl_2O_4$, and pure $SrCO_3$ in air. Three indistinct weight loss stages in the $SrCO_3$ and Al_2O_3 mixture take place in $800-1020\,^{\circ}C$ temperature range, which coincide well with the multiple peaks in the DTA investigation. On the other hand, the weight loss in the $SrCO_3$ and $SrAl_2O_4$ mixture and pure $SrCO_3$ both reveal a single peak at a similar temperature range to that of the $SrCO_3$ and Al_2O_3 mixture, but the onset temperature of

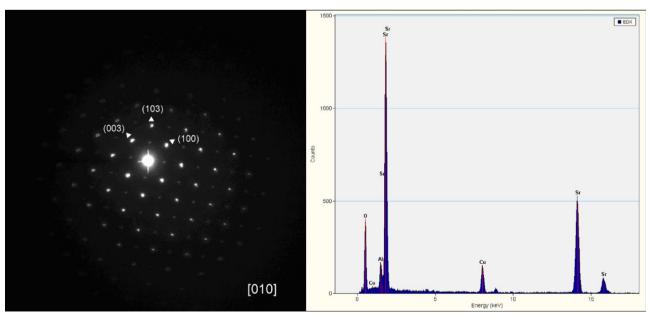


Fig. 3. Diffraction pattern and EDS result of the selected area in the TEM photograph.

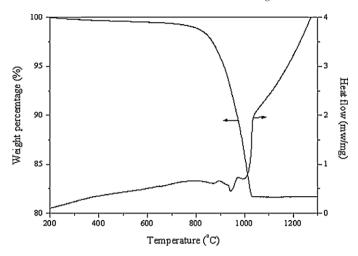


Fig. 4. DTA/TG curves of the $SrCO_3$ and Al_2O_3 mixture in air.

the SrCO₃ and SrAl₂O₄ mixture was slightly higher than that of pure SrCO₃. This indicates that the temperatures for the different reaction stages for each sample are overlapped and the complicated reactions between the reactants are still difficult to resolve. The DTG curves changed significantly when the atmosphere became 10 vol% CO₂ (Fig. 6). Three distinguishable stages of weight loss for the SrCO₃ and Al₂O₃ mixture under 10 vol% CO₂ atmosphere were observed. The first stage starts at near 850 °C, which is close to that of the reaction in air. The second stage starts at a temperature near 900 °C, and the third weight loss occurs at around 1100 °C. The SrCO₃ and SrAl₂O₄ mixture shows two stages of weight loss. The first stage starts at a temperature around 1000 °C and another occurs near 1100 °C. For the pure SrCO₃, an obvious weight loss peak starts at around 1100 °C, followed by a trace weight loss near 1300 °C.

In the $SrCO_3$ and Al_2O_3 solid-state reaction under 10 vol% CO_2 atmosphere, the weight loss stages are shifted toward higher temperatures and become distinguishable compared to that under an air atmosphere. This shows that these reactions

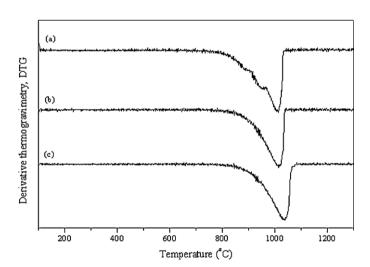


Fig. 5. DTG curves of the mixture in air, (a) $SrCO_3 + Al_2O_3$, (b) $2SrCO_3 + SrAl_2O_4$, and (c) pure $SrCO_3$.

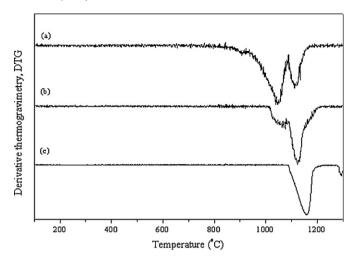


Fig. 6. DTG curves of the mixture under 10 vol% CO₂ atmosphere, (a) $SrCO_3 + Al_2O_3$, (b) $2SrCO_3 + SrAl_2O_4$, and (c) pure $SrCO_3$.

are sensitive to CO_2 partial pressure. From the thermodynamic aspect, the thermal decomposition temperature of $SrCO_3$ in air alone (Eq. (1)) must be greater than 1000 K [18]. Nevertheless, the thermal decomposition of $SrCO_3$ can be promoted by a subsequent reaction with a lower free energy, such as followed by $SrO + Al_2O_3 \rightarrow SrAl_2O_4$ at around 690 K, and followed by $2SrO + SrAl_2O_4 \rightarrow Sr_3Al_2O_6$ at around 850 K (Fig. 7). These combination reactions can be referred to as direct reactions to form $SrAl_2O_4$ (Eq. (2)) and $Sr_3Al_2O_6$ (Eq. (3)), respectively. By increasing the CO_2 concentration to 10 vol%, the $SrCO_3$ decomposition temperature is raised from 1000 K to near 1280 K, thereby suggesting an increase in the reaction temperature for the related combination reactions.

$$SrCO_3 \rightarrow SrO + CO_2$$
 (1)

$$SrCO_3 + Al_2O_3 \rightarrow SrAl_2O_4 + CO_2$$
 (2)

$$2SrCO_3 + SrAl_2O_4 \rightarrow Sr_3Al_2O_6 + 2CO_2$$
 (3)

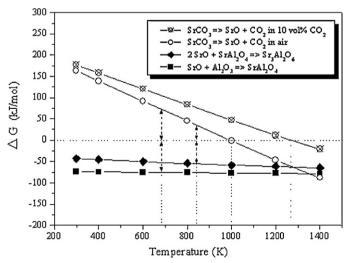


Fig. 7. Calculated Gibb's free energies of the possible reactions in the solidstate reaction system.

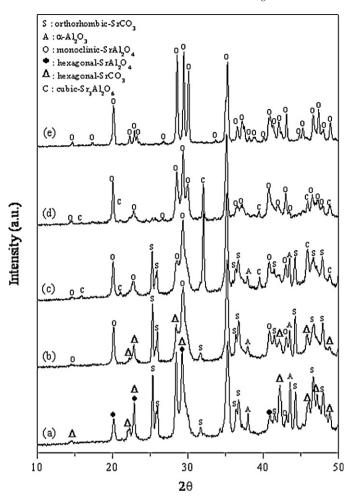


Fig. 8. XRD patterns of the $SrCO_3$ and Al_2O_3 mixture calcined at different temperatures under 10 vol% CO_2 atmosphere, (a) 950 °C, without soaking, (b) 950 °C, 4 h, (c) 1030 °C, without soaking, (d) 1200 °C, without soaking, and (e) 1300 °C, 2 h.

3.3. The reaction mechanism

Camby reported the formation of $BaAl_2O_4$ in the earliest reaction stage between $BaCO_3$ and Al_2O_3 [11]. The thermodynamic results also indicate the reaction occurring at the lowest reaction temperature for the reaction between $SrCO_3$ and Al_2O_3 is due to the reaction to form $SrAl_2O_4$ (Eq. (2)). Therefore, the first weight loss stages for the solid-state reaction between $SrCO_3$ and Al_2O_3 (at $800\,^{\circ}C$ in air, and at $850\,^{\circ}C$ under $10\,vol\%$ CO_2 atmosphere) can be attributed to the formation of $SrAl_2O_4$ according to Eq. (2). Because of the lower dissociation energy of SrO than Al_2O_3 , the prevailing diffusion of Sr^{2+} ions for the formation of $SrAl_2O_4$ [10] is suggested in this stage.

The second stage of the $SrCO_3$ and Al_2O_3 mixture under 10 vol% CO_2 atmosphere, consists of two kinds of reactions. The weight loss occurs at $1030\text{--}1100\,^{\circ}\text{C}$, which corresponds to the first weight loss stage for the $SrCO_3$ and $SrAl_2O_4$ mixture (Fig. 6). This can be reasonably attributed to the interfacial reaction between $SrCO_3$ and $SrAl_2O_4$ for the formation of $Sr_3Al_2O_6$ (Eq. (3)). Furthermore, a trace reaction is observed in the narrow $900\text{--}1030\,^{\circ}\text{C}$ temperature range, which is lower than that for the $Sr_3Al_2O_6$ formation reaction from $SrCO_3$ and

SrAl₂O₄. Fig. 8 shows the XRD results for samples calcined at different conditions under 10 vol% CO₂ atmosphere, indicating that only hexagonal SrCO₃ and hexagonal SrAl₂O₄ occurred at 950 °C. By increasing the holding time to 4 h, a small amount of hexagonal SrCO₃ still remained and no intermediate phase, Sr₃Al₂O₆, was observed. This suggests that the reaction in the temperature interval resulted mainly in SrAl₂O₄ formation. After the first reaction stage, the unreacted SrCO₃ and Al₂O₃ were separated by SrAl₂O₄ grains, which suppressed the decomposition of unreacted SrCO₃ due to the decomposition temperature of pure SrCO₃ under 10 vol% CO₂ atmosphere must be greater than 1000 °C. Therefore, at this low temperature range (900–1030 °C), the reaction involving a decomposition of SrCO₃ into SrO and CO₂, and a subsequent SrO reaction with Al₂O₃ are unlikely. Moreover, the intermediate phase, Sr₃Al₂O₆, resulting from the direct reaction of SrCO₃ and SrAl₂O₄ was not observed at this temperature range. Thus, there is another reason to induce SrCO₃ decomposition at 900-1030 °C under 10 vol% CO2 atmosphere. The TEM micrograph (Fig. 2), diffraction patterns and EDS (Fig. 3) results indicate that the Al3+ ions may diffuse through the SrAl₂O₄ and into SrCO₃ lattice to carry out the reaction (Eq. (2)). Therefore, hexagonal SrCO₃ formation can be attributed to the diffusion of Al₂O₃, and the formation of Sr₃Al₂O₆ is reasonably ascribed to the reaction between SrCO₃ and SrAl₂O₄.

Using the JMA approach, the kinetic of the first stage weight loss for the $SrCO_3$ – Al_2O_3 mixture under 10 vol% CO_2 atmosphere was studied (Fig. 9). The n exponent for this reaction is around 0.5, indicating that it is probably diffusion controlled [19] for the initial interfacial reaction between $SrCO_3$ and Al_2O_3 . Through the Arrhenius approach, the weight loss activation energy is about 323.8 kJ/mol.

The last weight loss for the SrCO₃ and Al₂O₃ mixture under 10 vol% CO₂ atmosphere takes place at around 1100–1200 °C, which coincides exactly with both the second weight loss stage in the SrCO₃ and SrAl₂O₄ mixture, and the significant weight loss in pure SrCO₃. The activation energies of these weight loss

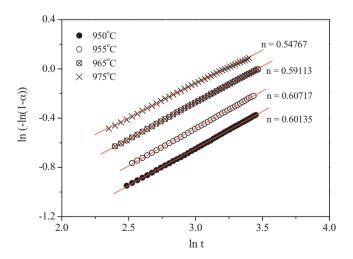


Fig. 9. $\ln (-\ln(1 - \alpha))$ vs. $\ln t$ for the 1st-stage weight loss of the SrCO₃-Al₂O₃ mixture calcined in 10 vol% CO₂.

stages are 1097.4 kJ/mol, 1060.3 kJ/mol, and 1046.2 kJ/mol, respectively (Fig. 10). Similar activation energy values can be ascribed to the thermal decomposition of pure SrCO₃ (Eq. (1)). The n exponents for the admixture with Al_2O_3 and with SrAl₂O₄ are both around 0.6–0.8, and the value for the pure SrCO₃ is 0.4–0.6. Hancock reported that the decomposition of $BaCO_3$ was controlled by diffusion with an exponent n value close to 0.5 [20]. Therefore, the SrCO₃ decomposition occurring around 1100-1200 °C can be considered as a diffusion-controlled mechanism as well and with a leaner development [19]. However, the SrO resulting from the SrCO₃ decomposition was not observed. The sample calcined at 1200 °C under 10 vol% CO₂ atmosphere only shows the formation of SrAl₂O₄, Sr₃Al₂O₆ and remaining Al₂O₃ (Fig. 8). It is supposed that the resulting SrO diffuses rapidly into the product layer. The formation of pure SrAl₂O₄ is carried out via a complicated diffusion process at a higher temperature.

Diffusion couple experiments were used to investigate the species diffusion process. The bulks were stacked as shown in Fig. 11. Each couple was heat-treated at 1100 °C for 72 h. For the heat-treated couple stacked like Fig. 11(a), the bottom of SrAl₂O₄ bulk shows the formation of new species with different morphology. According to the EDS result (Fig. 12), Sr₃Al₂O₆ formation is implied. For the heat-treated couple stacked like Fig. 11(b), the top of the $Sr_3Al_2O_6$ bulk shows the new species formation with various compositions, i.e. the Al/Sr ratio increases from the interior to the top of the bulk (Fig. 13). The species at the most top with Al/Sr ≈ 2 is suggested to be the SrAl₂O₄ formation. Nevertheless, SrO formation was not observed in the solid-state reaction between SrCO₃ and Al₂O₃. The resulted SrO is supposed to diffuse through the product layer, and take place in the reaction with Sr₃Al₂O₆, forming SrAl₂O₄. Moreover, Al₂O₃ can diffuse through SrAl₂O₄ to react with Sr₃Al₂O₆, forming SrAl₂O₄. The solid-state reaction should be a dual diffusion mechanism.

The solid-state reaction between $SrCO_3$ and Al_2O_3 under CO_2 atmosphere can be separated into multiple reaction stages.

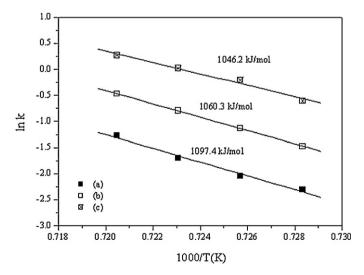


Fig. 10. Arrhenius plots of the third stages of weight loss for the different mixtures, (a) $SrCO_3 + Al_2O_3$, (b) $2SrCO_3 + SrAl_2O_4$, and (c) pure $SrCO_3$.

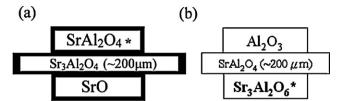
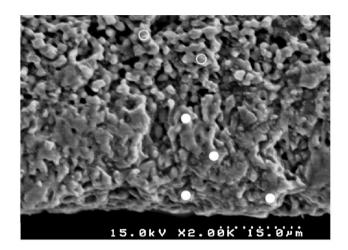
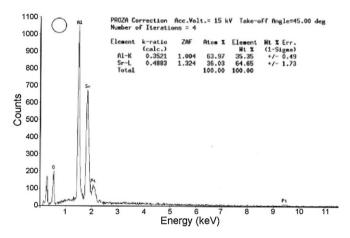




Fig. 11. Stacking scheme for the diffusion couples.

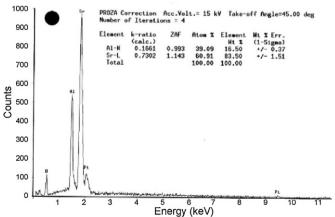


Fig. 12. SEM micrograph and EDS results of the SrAl₂O₄ bulk sample.

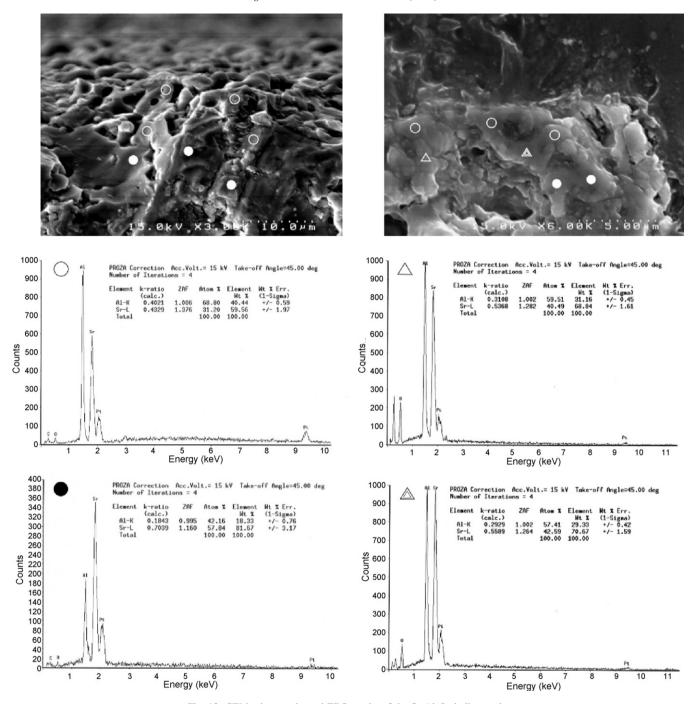


Fig. 13. SEM micrographs and EDS results of the $Sr_3Al_2O_6$ bulk sample.

The reactions are attributed to different diffusion mechanisms. However, these reactions occur at very close temperatures under air atmosphere, which leads to a complex reaction between the solids in air.

4. Conclusions

This study presented the phase evolution of the SrCO₃ and Al₂O₃ reaction. The formation of hexagonal SrCO₃ and hexagonal SrAl₂O₄ was observed under CO₂ atmosphere. The incorporation of excess Al₂O₃ is suggested to stabilize these high-temperature hexagonal species. The estimated lattice

parameters of the stabilized hexagonal SrCO₃ are a = 3.99 Å and c = 10.49 Å and the diffraction index was proposed.

The thermal analysis under CO_2 atmosphere was used to investigate the $SrCO_3$ and Al_2O_3 mixture solid-state reaction. The results indicate that the first reaction is attributed to the formation of $SrAl_2O_4$ from the reaction between $SrCO_3$ and Al_2O_3 dominated by Sr^{2+} ion diffusion. The activation energy of the first reaction is about 323.8 kJ/mol. The Al^{3+} ions then diffuse through the product layer to continue the reaction. Subsequently, $Sr_3Al_2O_6$ is formed from $SrCO_3$ and $SrAl_2O_4$ at a higher temperature (900–1030 °C). The $SrCO_3$ thermal decomposition with activation energies of 1046.2-1097.4 kJ/mol finally occurs.

The resulting SrO may diffuse rapidly through the product layer, forming pure SrAl₂O₄ via a complicated diffusion process at a higher temperature. These reaction stages occur at very close temperatures under an air atmosphere. The high overlap of these reactions leads to the complex reaction between the solids in air.

Acknowledgment

The authors would like to express their thanks to the Ministry of Economic Affairs of the Republic of China for financially supporting this project (100-EC-17-A-08-S1-170).

References

- [1] S.H.M. Poort, W.P. Blokpoel, G. Blasse, Luminescence of Eu²⁺ in barium and strontium aluminate and gallate, Chem. Mater. 7 (1995) 1547.
- [2] K.Y. Jung, H.W. Lee, H.K. Jung, Luminescent properties of (Sr, Zn) Al₂O₄:Eu²⁺,B³⁺ particles as a potential green phosphor for UV LEDs, Chem. Mater. 18 (2006) 2249.
- [3] T. Katsumata, K. Sasajima, T. Nabae, S. Komuro, T. Morikawa, Characteristics of strontium aluminate crystals used for long-duration phosphors, J. Am. Ceram. Soc. 81 (1998) 413.
- [4] V. Singh, T.K.G. Rao, J.J. Zhu, Preparation, luminescence and defect studies of Eu²⁺-activated strontium hexa-aluminate phosphor prepared via combustion method, J. Solid State Chem. 179 (2006) 2589.
- [5] A. Douy, M. Capron, Crystallisation of spray-dried amorphous precursors in the SrO-Al₂O₃ system: a DSC study, J. Eur. Ceram. Soc. 23 (2003) 2075.
- [6] Y. Liu, C.N. Xu, Influence of calcining temperature on photoluminescence and triboluminescence of europium-doped strontium aluminate particles prepared by sol-gel process, J. Phys. Chem. B 107 (2003) 3991.
- [7] Z. Fu, S. Zhou, S. Zhang, Study on optical properties of rare-earth ions in nanocrystalline monoclinic $SrAl_2O_4$:Ln (Ln = Ce^{3+} , Pr^{3+} , Tb^{3+}), J. Phys. Chem. B 109 (2005) 14396.

- [8] D. Ravichandran, S.T. Johnson, S. Erdei, R. Roy, W.B. White, Crystal chemistry and luminescence of the Eu²⁺-activated alkaline earth aluminate phosphors, Display 19 (1999) 197.
- [9] T. Aitasalo, P. Deren, J. Holsa, H. Jungner, J.C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Strek, Persistent luminescence phenomena in materials doped with rare earth ions, J. Solid State Chem. 171 (2003) 114.
- [10] M.I. Zaki, G.A.M. Hussien, R.B. Fahim, A thermogravimetric study of the solid-state reaction between alumina and strontium carbonate, J. Therm. Anal. 30 (1985) 129.
- [11] L.P. Camby, G. Thomas, Kinetic considerations about the successive nucleations of various aluminates in the BaCO₃-γ-Al₂O₃ reaction, Solid State Ionics 93 (1997) 315.
- [12] M.A. Gulgun, O.O. Popoola, W.M. Kriven, Chemical synthesis and characterization of calcium aluminate powders, J. Am. Ceram. Soc. 77 (1994) 531.
- [13] Y.L. Chang, H.I. Hsiang, M.T. Liang, Phase evolution during formation of $SrAl_2O_4$ from $SrCO_3$ and α - Al_2O_3 /AlOOH, J. Am. Ceram. Soc. 90 (2007) 2759
- [14] H. Yamada, W.S. Shi, K. Nishikubo, C.N. Xu, Determination of the crystal structure of spherical particles of SrAl₂O₄:Eu prepared by the spray method, J. Electrochem. Soc. 150 (2003) E251.
- [15] W.S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, C.N. Xu, Novel structural behavior of strontium aluminate doped with europium, J. Electrochem. Soc. 151 (2004) H97.
- [16] T. Nishino, Formation process of metastable phase (δ) of alkaline-earth carbonate, J. Am. Ceram. Soc. 70 (1987) C-162.
- [17] J.J. Lander, Polymorphism and anion rotational disorder in the alkaline earth carbonates, J. Chem. Phys. 17 (1949) 892.
- [18] I. Barin, O. Knacke, Thermodynamical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1973.
- [19] C.H. Bamford, C.F.H. Tipper, Comprehensive Chemical Kinetics, Reaction in the Solid State, vol. 22, Elsevier, Oxford, UK/New York, 1980, (ch. 3).
- [20] J.D. Hancock, J.H. Sharp, Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO₃, J. Am. Ceram. Soc. 55 (1972) 74.