

Available online at www.sciencedirect.com

## SciVerse ScienceDirect

CERAMICS INTERNATIONAL

Ceramics International 38 (2012) 3499-3502

www.elsevier.com/locate/ceramint

### Short communication

# Multiferroic and piezoelectric properties of 0.65BiFeO<sub>3</sub>–0.35BaTiO<sub>3</sub> ceramic with pseudo-cubic symmetry

Yongxing Wei\*, Xiaotao Wang, Jiangjiang Jia, Xiaoli Wang

MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
Received 1 November 2011; received in revised form 28 November 2011; accepted 28 November 2011

Available online 6 December 2011

#### Abstract

Perovskite solid solution ceramic of 0.65BiFeO<sub>3</sub>-0.35BaTiO<sub>3</sub> (0.65BF-0.35BT) with high resistivity was prepared by conventional solid-state reaction method. At room temperature, the XRD pattern of the ceramic could be indexed as pseudo-cubic symmetry. The ceramic displays a typical ferroelectric loop, with remnant polarization  $P_r$  of  $30.6 \,\mu\text{C/cm}^2$ . The piezoelectric coefficient  $d_{33}$  is  $104 \,\text{pC/N}$ . The temperature dependence of dielectric constant  $\varepsilon(T)$  exhibits a broad anomaly, with the temperature  $T_{\rm m}$  for maximum dielectric constant  $\varepsilon_{\rm m}$  of  $414 \,^{\circ}\text{C}$  at 1 MHz. The ceramic shows ferrimagnetism at room temperature, with remnant magnetization  $M_{\rm r}$  of  $0.07 \,\text{emu/g}$  and ferrimagnetic transition temperature  $T_{\rm m}$  of  $\sim$ 420  $^{\circ}\text{C}$ , respectively. The appearance of pseudo-cubic phase was supposed to be related to the suppression of rhombohedral distortion by Ba ions. © 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: C. Dielectric properties; C. Magnetic properties; Ferroelectrics; Structure

## 1. Introduction

Perovskite BiFeO<sub>3</sub> is the best candidate for multiferroic materials due to its high antiferromagnetic Neel temperature  $(T_{\rm N}=370~{\rm ^{\circ}C})$  and ferroelectric Curie temperatures  $(T_{\rm c}=825~{\rm ^{\circ}C})$  [1,2]. To achieve strong magnetoelectric coefficients, large ferroelectric and ferromagnetic ordering parameters could be requested [3]. However, the difficulty of the synthesis for high-quality BiFeO<sub>3</sub> ceramic with single phase and low leakage current hinders the observation of large polarization [4]. Besides, the BiFeO<sub>3</sub> ceramic does not show macro-magnetization at room temperature [5].

Chemical substitution is an effective way to increase the resistivity and enhance magnetic property in BiFeO<sub>3</sub> based ceramics simultaneously [6–8]. (1-x)BiFeO<sub>3</sub>–xBaTiO<sub>3</sub> ((1-x)BF–xBT) solid solution ceramics are intensively researched for this purpose [9–13]. At room temperature, (1-x)BF–xBT undergoes phase transitions from rhombohedral (x = 0-0.33) to cubic (x = 0.33-0.925), and to tetragonal (x = 0.925-1) [9]. The enhancement of magnetic property has been confirmed [10–12].

E-mail address: weiyx1985@gmail.com (Y. Wei).

Still, the lack of good dielectric and ferroelectric data for (1-x)BF-xBT solid solution ceramics prevented researchers from understanding the relative properties. For example, there is not an agreement toward the structure of the solid solutions with the content of BaTiO<sub>3</sub> more than 33 mole% [9,11,13]. To understand the intrinsic dielectric and ferroelectric properties, (1-x)BF-xBT solid solution ceramics with good insulation must be supplied. Recently, we successfully synthesized (1-x)BF-xBT (x=0.20-0.40) ceramics with high resistivity, ferroelectric loops were observed for all the compositions. In this paper, we mainly report our investigation on 0.65BF-0.35BT ceramic with pseudo-cubic phase, which shows both large polarization and weak magnetization at room temperature.

## 2. Experimental

0.65BF-0.35BT ceramic samples were prepared by mixed oxide method. The starting reagents of Bi<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, BaCO<sub>3</sub>, TiO<sub>2</sub> were carefully weighed in stoichiometric proportion and wet mixed thoroughly by ball milling for 10 h. After drying, the mixture was presintered at 800 °C for 2 h in a covered corundum crucible to prevent the volatilization of bismuth oxide. The presintered powder was ball milled and dried. Pellets with 12 mm in diameter and 1–2 mm in thickness were

<sup>\*</sup> Corresponding author.

pressed using 10% polyvinyl alcohol binder. The pellets were sintered in a covered corundum crucible at 1050 °C for 3 h.

Crystal structure was examined by an X-ray diffractometer (XRD, Bruker AXS D8 ADVAMDMCE, German) at room temperature. The dc resistivity was measured by high resistance meter. To measure the ferroelectric hysteresis loop, a sinusoidal signal of 10 Hz, generated by a personal computer with a PCI6221 Data Acquisition (DAQ) card, was amplified through a Trek 610E high-voltage supply/amplifier/controller and applied to the sample. Current through the sample was collected by the DAO card, and converted to a digital signal. The ferroelectric hysteresis loop was obtained through charge integration. The sample was poled in an oil bath at room temperature for 10 min. The piezoelectric coefficient constant  $d_{33}$  was measured by a Berlincount (ZJ-3, China)  $d_{33}$  meter. The planar electromechanical coupling factor  $k_p$  was calculated based on the resonance method using an impedance analyzer (Wayne Kerr 6500B, England). The dielectric measurement was accomplished on an automated system, within a temperature control sample chamber and an Agilent 4284A LCR meter were controlled by a personal computer. The magnetic hysteresis loop and temperature dependence of magnetization M under 0.4 T were measured using Vibrating Sample Magnetometer (VSM, Lakeshore7300, USA).

#### 3. Results and discussion

Fig. 1a shows the XRD pattern for 0.65BF–0.35BT ceramic at room temperature. The ceramic exhibits a pure perovskite structure without the observation of impurity phase such as Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> and Bi<sub>25</sub>FeO<sub>39</sub> [14]. Besides, no peak splitting of

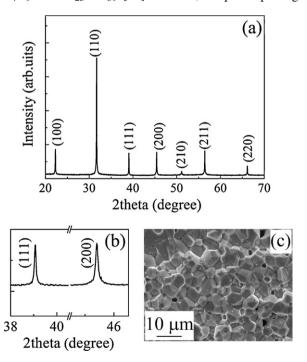



Fig. 1. (a) XRD pattern for 0.65BF-0.35BT ceramic at room temperature, (b) the magnified pattern for  $(1\ 1\ 1)$  and  $(2\ 0\ 0)$  pseudo cubic reflections, (c) SEM micrograph of fracture surface of 0.65BF-0.35BT ceramic.

(1 1 1) pseudo-cubic reflection for symbol of rhombohedral symmetry, or of (2 0 0) for tetragonal symmetry was detected, as shown in Fig. 1b. It seems that the reflection peaks of 0.65BF-0.35BT ceramic could be indexed as cubic symmetry. SEM micrograph of fracture surface of 0.65BF-0.35BT ceramic is shown in Fig. 1c. The ceramic has dense and homogeneous microstructure, and the grain size is in the range of  $4-7 \mu m$ .

High resistivity of pure BiFeO<sub>3</sub> ceramic synthesized by conventional solid-state reaction is usually difficult. The low resistivity could be ascribed to the mix valance of Fe ions and O vacancies, which is easy to induce large leakage current and unfavorable for the observation of saturated polarization [4]. For 0.65BF–0.35BT ceramic, the order of the magnitude for resistivity  $\rho_{\rm dc}$  is about  $10^{10}~\Omega$  cm under dc field of 10 kV/cm. That is, the co-substitution of Bi  $^{3+}$  and Fe  $^{3+}$  ions using Ba  $^{2+}$  and Ti  $^{4+}$  ions could enhance resistivity effectively.

Fig. 2 plots loops of polarization current density j and the corresponding polarization P versus electric field E under different ac maximum electric field  $E_{\rm m}$  for  $0.65{\rm BF-}0.35{\rm BT}$  ceramic at room temperature. The polarization current shows an abrupt increase and j(E) charge peak appears when  $E_{\rm m}$  increases from  $10~{\rm kV/cm}$  to  $20~{\rm kV/cm}$ , which indicates the reversion of the ferroelectric domains for  $0.65{\rm BF-}0.35{\rm BT}$ . The remnant polarization  $P_{\rm r}$  and coercive field  $E_{\rm c}$  are both dependent on the  $E_{\rm m}$ . Under  $E_{\rm m}$  of  $50~{\rm kV/cm}$ ,  $P_{\rm r}$  and  $E_{\rm c}$  are  $30.6~{\rm \mu C/cm^2}$  and  $27.9~{\rm kV/cm}$ , respectively. The value of  $P_{\rm r}$  for  $0.65{\rm BF-}0.35{\rm BT}$  ceramic is very large in  ${\rm BiFeO_3}$  based ceramics, which is comparable to that for  ${\rm BF-BT}$  solutions reported by Ozaki et al. [13].

The poling field  $E_p$  dependence of the piezoelectric coefficient constant  $d_{33}$  for 0.65BF-0.35BT ceramic is plotted in Fig. 3.  $d_{33}$  increases quickly with the dc poling field  $E_p$  larger

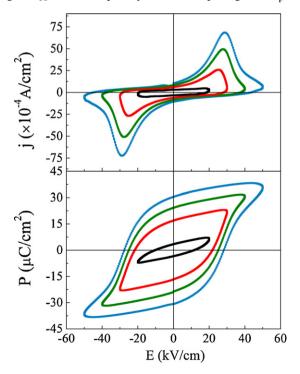



Fig. 2. Loops of polarization current j and polarization P versus external electric field E for 0.65BF–0.35BT ceramic.

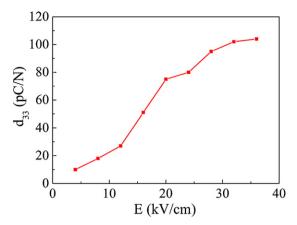



Fig. 3. The poling field  $E_{\rm p}$  dependence of the piezoelectric coefficient constant  $d_{33}$  for 0.65BF-0.35BT ceramic.

than 12 kV/cm. After poled under  $E_{\rm p}$  of 36 kV/cm,  $d_{33}$  increases to 104 pC/N. The planar electromechanical coupling factor  $k_{\rm p}$  is about 0.19. The ceramic shows a remarkable piezoelectric enhancement compared with pure BiFeO<sub>3</sub> (26 pC/N) [15].

Temperature dependences of dielectric constant  $\varepsilon$  and dielectric loss  $\tan \delta$  at various frequencies for 0.65BF–0.35BT ceramic are shown in Fig. 4. The dielectric constant  $\varepsilon$  and dielectric loss  $\tan \delta$  at 1 kHz and 20 °C are 722 and 0.09, respectively. The  $\varepsilon(T)$  curves of 0.65BF–0.35BT ceramic show relaxation behavior. With frequency increasing from 1 kHz to 1 MHz, maximum  $\varepsilon_{\rm m}$  decreases from 28,700 to 20,800 and the temperature of  $\varepsilon_{\rm m}$  shifts from 386 °C to 414 °C, respectively.

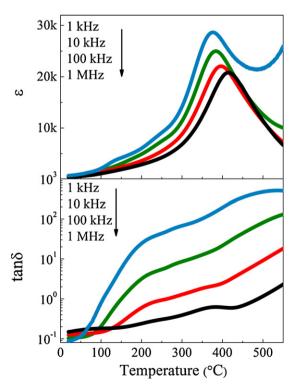



Fig. 4. Temperature dependences of dielectric constant  $\varepsilon$  and dielectric loss tan  $\delta$  at various frequencies for 0.65BF–0.35BT ceramic.

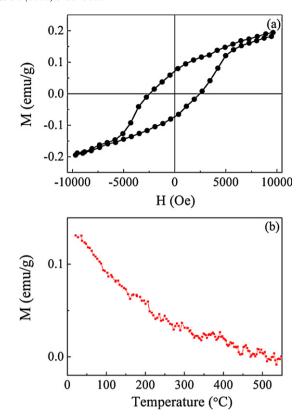



Fig. 5. (a) Loop of magnetization M versus magnetic field H at room temperature and (b) temperature dependence of M for 0.65BF-0.35BT ceramic.

The ferroelectric loop and the dielectric anomaly around  $T_{\rm m}$  of 0.65BF-0.35BT ceramic indicate that the XRD reflection peaks could be indexed as pseudo cubic symmetry rather than cubic symmetry. The appearance of pseudo-cubic phase for (1-x)BF-xBT solid solutions is distinct to the structure evolution for  $(1 - x)BiFeO_3 - xPbTiO_3$  ((1 - x)BF - xPT) solid solutions, which show a morphotropic phase boundary (MPB) region when x = 0.17-0.31, with the coexistence of rhombohedral and tetragonal phases [16]. The differences are focused on the substituted ions in the A-site, with Ba<sup>2+</sup> ions for BF–xBT and Pb<sup>2+</sup> ions for BF–xPT. Ba<sup>2+</sup> and Pb<sup>2+</sup> ions are both larger than Bi<sup>2+</sup> ions, which is suspected to be helpful to stable BiFeO<sub>3</sub> phase [14]. However, Pb<sup>2+</sup> ions are ferroelectric active [17]. Even the content of PbTiO<sub>3</sub> is less than 35 mole%, (1 - x)BF-xPT could have large tetragonal distortions [16]. The experimental and theoretical evidence demonstrates the hybridization between (Bi,Pb)(6s,6p) and O(2p) orbitals [18]. Contrarily, Ba<sup>2+</sup> ions are not ferroelectric active, the tetragonal distortions for BaTiO<sub>3</sub> are mainly related to Ti<sup>4+</sup> ions [17]. The Ba<sup>2+</sup> ions in the A-site could suppress the rhombohedral distortions due to the large radius and induce the appearance of pseudo-cubic phase. The pseudo-cubic phase might appear in two situations: (1) the small rhombohedral distortion like Pb(Zn<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub> [19], (2) the coexistence of rhombohedral and cubic phases [13].

The magnetic field H dependence of magnetization M for 0.65BF-0.35BT ceramic is plotted in Fig. 5a. The ferromagnetic hysteresis loop suggests the ferrimagnetic ordering in 0.65BF-0.35BT ceramic. The remnant magnetization  $M_r$  and coercive field  $H_c$  are 0.07 emu/g and 2.4 kOe, respectively. Our

magnetic result is different to the research by Kumar et al. [10], but is consistent with the study by Kim et al. [11]. The enhancement mechanism of magnetic property in (1 - x)BF–xBT is complicate. Both the structure moderation by  $Ba^{2+}$  ions and the influence on the  $Fe^{3+}$  spins arrangement by part of  $Ti^{4+}$  ions could be helpful to introduce weak magnetization [10]. However, the structure and the arrangement of B-site ions are both sensitive to the composition inhomogeneity due to different thermal processing. That may be one reason for the different reported  $M_r$  of (1 - x)BF–xBT solid solution even in the same composition [10–12].

Fig. 5b shows the temperature dependence of M. M(T) curve shows a gradual decrease with increasing temperature. Due to the rather weak magnetization and the complicate chemical compositions, no sharp decrease of M around ferrimagnetic transition Neel temperature  $T_{\rm N}$  is observed for 0.65BF-0.35BT ceramic. The temperature at which M is about zero is around 420 °C, which could be taken as  $T_{\rm N}$ . Interestingly,  $T_{\rm N}$  for 0.65BF-0.35BT ceramic is rather close to its  $T_{\rm m}$ .

### 4. Conclusion

0.65BF-0.35BT ceramic with high resistivity was successfully synthesized by solid-state reaction method. The symmetry of the ceramic could be indexed as pseudo-cubic. The ceramic shows the coexistence of ferroelectric, piezoelectric and ferrimagnetic properties. The temperature dependence of dielectric property indicates its relaxation behavior.

## Acknowledgement

This work was supported by the Fund of National Natural Science Foundation of China (project no. 50772087).

## References

- P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, Temperaturedependence of the crystal and magnetic-structures of BiFeO<sub>3</sub>, J. Phys. C 13 (1980) 1931–1940.
- [2] R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, β phase and β-γ metal-insulator transition in multiferroic BiFeO<sub>3</sub>, Phys. Rev. B 77 (2008) 014110.

- [3] W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials, Nature 442 (2006) 759–765.
- [4] G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite, Adv. Mater. 21 (2009) 2463–2485.
- [5] A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, Magnetic and electrical properties of single-phase multiferroic BiFeO<sub>3</sub>, J. Appl. Phys. 97 (2005) 093903.
- [6] K.S. Nalwa, A. Garg, A. Upadhyaya, Effect of samarium doping on the properties of solid-state synthesized multiferroic bismuth ferrite, Mater. Lett. 62 (2008) 878–881.
- [7] Z.W. Chen, J.Q. Hu, Z.Y. Lu, X.H. He, Low-temperature preparation of lanthanum-doped BiFeO<sub>3</sub> crystallites by a sol–gel-hydrothermal method, Ceram. Int. 37 (2011) 2359–2364.
- [8] J.R. Cheng, S.W. Yu, J.G. Chen, Z.Y. Meng, L.E. Cross, Dielectric and magnetic enhancements in BiFeO<sub>3</sub>–PbTiO<sub>3</sub> solid solutions with La doping, Appl. Phys. Lett. 89 (2006) 122911.
- [9] I.H. Ismailzade, R.M. Ismailov, A.I. Alekberov, F.M. Salaev, Investigation of the magnetoelctric (ME)H effect in solid-solutions of the systems BiFeO<sub>3</sub>-BaTiO<sub>3</sub> and BiFeO<sub>3</sub>-PbTiO<sub>3</sub>, Phys. Status Solidi (A) 68 (1981) K81-K85.
- [10] M.M. Kumar, S. Srinath, G.S. Kumar, S.V. Suryanarayana, Spontaneous magnetic moment in BiFeO<sub>3</sub>-BaTiO<sub>3</sub> solid solutions at low temperatures, J. Magn. Magn. Mater. 188 (1998) 203–212.
- [11] J.S. Kim, C.I. Cheon, C.H. Lee, P.W. Jang, Weak ferromagnetism in the ferroelectric BiFeO<sub>3</sub>–ReFeO<sub>3</sub>–BaTiO<sub>3</sub> solid solutions (Re = Dy,La), J. Appl. Phys. 96 (2004) 468–474.
- [12] F.P. Gheorghiu, A. Ianculescu, P. Postolache, N. Lupu, M. Dobromir, D. Luca, L. Mitoseriu, Preparation and properties of (1 x)BiFeO<sub>3</sub>–xBa-TiO<sub>3</sub> multiferroic ceramics, J. Alloy Compd. 506 (2010) 862–867.
- [13] T. Ozaki, S. Kitagawa, S. Nishihara, Y. Hosokoshi, M. Suzuki, Y. Noguchi, M. Miyayama, S. Mori, Ferroelectric properties and nano-scaled domain structures in (1-x)BiFeO<sub>3</sub>–xBaTiO<sub>3</sub> (0.33 < x < 0.50), Ferroelectrics 385 (2009) 155–161.
- [14] S.M. Selbach, M.-A. Einarsrud, T. Grande, On the thermodynamic stability of BiFeO<sub>3</sub>, Chem. Mater. 21 (2009) 169–173.
- [15] G.L. Yuan, S.W. Or, Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic  $Bi_{1-x}Nd_xFeO_3$  (x = 0-0.15) ceramics, Appl. Phys. Lett. 88 (2006) 062905.
- [16] W.M. Zhu, H.Y. Guo, Z.G. Ye, Structural and magnetic characterization of multiferroic (BiFeO<sub>3</sub>)(1 – x)(PbTiO<sub>3</sub>)x solid solutions, Phys. Rev. B 78 (2008) 014401.
- [17] R.E. Cohen, Origin of ferroelectricity in perovskite oxides, Nature 358 (1992) 136–138.
- [18] M. Yashima, K. Omoto, J. Chen, H. Kato, X.R. Xing, Evidence for (Bi,Pb)-O covalency in the high T<sub>C</sub> ferroelectric PbZn<sub>1/3</sub>Nb<sub>2/3</sub>O<sub>3</sub> with large tetragonality, Chem. Mater. 23 (2011) 3135–3137.
- [19] E.H. Kisi, J.S. Forrester, K.S. Knight, PbZn<sub>1/3</sub>Nb<sub>2/3</sub>O<sub>3</sub> at 4.2 and 295 K, Acta Crystallogr. C 62 (2006) i46–i48.