

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 38 (2012) 3503-3507

www.elsevier.com/locate/ceramint

Short communication

Microstructure and dielectric tunable properties of $SrO(Sr_{1-x}Ba_xTiO_3)_n$ microwave ceramics

Jiangying Wang*, Huang Zhou, Jintao Liu, Shengyong Jin, Lina Sun, Jingji Zhang

College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
Received 13 December 2011; received in revised form 14 December 2011; accepted 15 December 2011
Available online 23 December 2011

Abstract

Microstructure and dielectric tunable properties of $SrO(Sr_{1-x}Ba_xTiO_3)_n$ (x=0 and 0.5, n=1-4) microwave ceramics prepared through solid-state reactions have been investigated. For $SrO(SrTiO_3)_n$ series, Sr_2TiO_4 can be isolated as single phase in n=1 product and $Sr_4Ti_3O_{10}$ appears in the $n \ge 2$ cases as either a major phase (n=3, 4) or a second phase (n=2). Ba^{2+} substitution for Sr^{2+} causes the formation of $SrTiO_3$ and $Ba_xSr_{2-x}TiO_4$. $SrO(Sr_{1-x}Ba_xTiO_3)_n$ (n=1,2) have no dielectric non-linear behavior in the temperature range of -165 to 50 °C. As n increases, the tunability increases. As a result, Ba^{2+} substitution for Sr^{2+} results in an increase in permittivity and tunability, but a decrease in Q value. © 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Layered perovskite structure; Tunability; Microwave properties

1. Introduction

 $SrO(SrTiO_3)_n$ (n= integer) series represents the prototype of a huge family of layered oxides described by Ruddlesden and Popper [1,2], consisting of alternate stacks of SrO layers and perovskite $(SrTiO_3)_n$ block layers along the c-axis. The upper member of $SrO(SrTiO_3)_n$ is the well-known $SrTiO_3$ ($n=\infty$), which has been commonly used in grain boundary barrier-layer capacitors [3], resistive oxygen gas-sensors [4], solar cells [5], solid oxide electronic devices [6,7], substrates for perovskite films [8], and efficient photocatalyts [9,10]. The properties of $SrO(SrTiO_3)_n$ have yet been fully explored. They are expected to have applications like $SrTiO_3$.

Strained SrTiO₃ can exhibit ferroelectricity even at room temperature [11]. The relatively high tunability of the strained SrTiO₃ unfortunately signifies a remarkable increase in both relative permittivity and loss, rendering it less useful for high-frequency applications. The prospect of "engineering" the properties of $SrO(SrTiO_3)_n$ by varying n has stimulated experimental research as well as theoretical studies [12,13]. Its relative permittivity decreases as n decreases [14]. $SrO(SrTiO_3)_n$ may provide new tunable materials which have

decreased loss [15]. Wise et al. [14] found that $(Sr_xCa_{1-x})_{n+1-x}$

2. Experimental procedure

 $SrO(Sr_{1-x}Ba_xTiO_3)_n$ (x = 0 and 0.5, n = 1-4) ceramics were prepared through the conventional solid-state reaction method. High-purity BaCO₃ (99.0%, Sinopharm Chemical Reagent Co., Ltd., China), SrCO₃ (99.0%, Sinopharm Chemical Reagent Co., Ltd, China) and TiO₂ (98.0%, Sinopharm Chemical Reagent Co., Ltd., China) powders were used as starting materials. Mixtures based on the compositions of SrO(Sr_{1-x}- Ba_xTiO_3 _n (x = 0 and 0.5, n = 1-4) were ball-milled with zirconia media in ethanol for 24 h and then dried at 110 °C for 12 h. After drying, the powders were calcined at 1200 °C for 4 h and then re-milled for 24 h. The calcined powders, mixed with 8 wt% polyvinyl alcohol (PVA), were pressed into pellets at 100 MPa. The green pellets were kept at 550 °C for 6 h to remove the solvent and the binder. $SrO(SrTiO_3)_n$ and SrO(Sr_{0.5}Ba_{0.5}TiO₃)_n ceramics were sintered for 5 h in air at 1500 °C and 1450 °C, respectively.

Phase compositions of the ceramics were investigated by means of X-ray diffraction (XRD, Bruker D8 Advanced,

⁺¹Ti_nO_{3n+1} exhibited higher quality factors ($Q = 1/\tan \delta$) than Sr_{n+1}Ti_nO_{3n+1}. This paper was aimed to study dielectric properties of SrO(Sr_{1-x}Ba_xTiO₃)_n (x = 0 and 0.5, n = 1-4) ceramics.

^{*} Corresponding author. Tel.: +86 571 86875609. E-mail address: wjyliu@163.com (J. Wang).

Germany) with CuK_{α} radiation. Microstructural information was obtained by using a scanning electron microscopy (SEM, JSM EMP-800). Permittivity as a function of temperature was measured at 10 kHz in the temperature range of -165 to 50 °C, under 0 kV/cm and 30 kV/cm, respectively, using a Keithley model 2410 (Cleveland, OH) high-voltage source, coupled with TH2816A LCR meter (Changzhou, China). Permittivity and loss tangent at microwave frequencies was measured by the Hakki-Coleman dielectric resonator method, using a network analyzer (AV 3629A) in combination with a resonating cavity [16].

3. Results and discussion

XRD patterns of the $SrO(SrTiO_3)_n$ (n = 1-4) ceramics are shown in Fig. 1(a). For the sample with n = 1, Sr_2TiO_4 can be

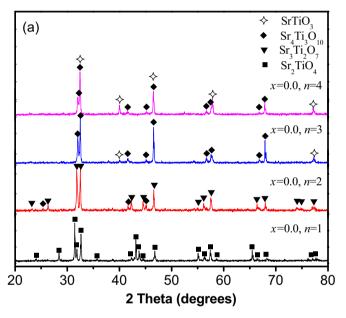


Fig. 1. XRD patterns of the $SrO(Sr_{1-x}Ba_xTiO_3)_n$ (x = 0.0 and 0.5, n = 1-4) ceramics: (a) x = 0.0 and (b) x = 0.5.

isolated as single phase according to JCPDF Nos. 72-2040 and 72-2041. $Sr_4Ti_3O_{10}$ appears in the samples with $n \ge 2$ as either a major phase (n = 3 and 4) or a second phase (n = 2). Wise et al. [14] reported that $Sr_3Ti_2O_7$ appeared in all samples as either a major phase ($n \ge 2$) or a second phase (n = 1). It can be seen that $Sr_3Ti_0O_3$ diffraction peaks appear in the sample with n = 3 and become stronger as n increases, which is in agreement with the results reported by Wise et al. [14].

Fig. 1(b) shows XRD patterns of the $SrO(Sr_{0.5}Ba_{0.5}TiO_3)_n$ (n=1-4) samples. All members have additional diffraction lines besides $SrTiO_3$ peaks, which can be assigned to $Ba_xSr_{2-x}TiO_4$ [17]. It means that $Ba_xSr_{2-x}TiO_4$ is more stable than $Ba_xSr_{1-x}TiO_3$. Meanwhile, it is notable that the $Ba_xSr_{2-x}TiO_4$ diffraction peaks become weaker as n increases. According to Wise et al. [14], $(Sr_xCa_{1-x})_3Ti_2O_7$ could be single phase. Single phase $(Sr_xRE_{1-x})_3Ti_2O_7$ ceramics were also reported by Wang et al. [18,19]. Here, $(Sr_xBa_{1-x})_3Ti_2O_7$ was not formed, which may be attributed to the destroyed symmetry of TiO_6 by the substitution for Sr^{2+} with larger Ba^{2+} . Wang et al. found that higher symmetry of TiO_6 was achieved by the substitution for Sr^{2+} with smaller RE^{2+} [20].

As shown in Fig. 2, the n=1 and n=2 samples have homogeneous microstructure with grains of $2-10 \mu m$, while the n=3 and 4 samples have a bimodal microstructure, consisting of pellet-shaped grains with a size of $\sim 50 \mu m$ and fine grains of $2-10 \mu m$. Block-like grains and porous microstructures are observed in n=3 and n=4 samples because the migration of grain boundaries was hindered during sintering [21].

Fig. 3 shows SEM image of the $SrO(Sr_{0.5}Ba_{0.5}TiO_3)_n$ (n=1-4) ceramics. The $SrO(Sr_{0.5}Ba_{0.5}TiO_3)_n$ ceramics except that with n=1 have quite dense microstructure. The n=1 sample has a bimodal microstructure, consisting of vermiculate-shaped grains of 2–5 μ m, and platelet grains with a size of $\sim 8~\mu$ m, whereas the $n \geq 2$ samples have a homogeneous microstructure. Compared to $SrO(SrTiO_3)_n$ ($n \geq 3$), the $SrO(Sr_{0.5}Ba_{0.5}TiO_3)_n$ ($n \geq 3$) ceramics has no platelet grains, possibly due to the formation of an orthorhombic Ba_2TiO_4 -type structure [17].

Similar to that of quantum paraelectric SrTiO₃, Curie temperature of the SrO(SrTiO₃)_n sample is also very low (<-165 °C). Temperature-permittivity curves of the $SrO(Sr_{1-x}Ba_xTiO_3)_n$ (x = 0.0 and 0.5, n = 1, 2) ceramics measured at 30 kV/cm are almost identical to those at 0 kV/ cm, indicating that their tunabilities are almost zero in the temperature range of -165 to $50\,^{\circ}\text{C}$. Temperature dependencies of permittivity of the $SrO(Sr_{1-x}Ba_xTiO_3)_n$ (x = 0.0 and 0.5, n = 3, 4) ceramics, measured at 0 kV/cm and 30 kV/cm, are displayed in Fig. 4. Calculated tunabilities at −150 °C and -100 °C are listed in Table 1. The increase in tunability of the $SrO(SrTiO_3)_n$ ceramics with increasing n is due to the increase in TiO_6 content. The tunability at -150 °C of the $SrO(Sr_{0.5})$ $Ba_{0.5}TiO_3$)_n samples markedly increases as compared to that of the $SrO(SrTiO_3)_n$ ceramics, whereas their tunabilities at -100 °C are almost the same, suggesting the formation of Ba_rSr_{2-r}TiO₄ instead of Ba_rSr_{1-r}TiO₃ [22]. The tunability of the $SrO(Sr_{1-x}Ba_xTiO_3)_n$ (x = 0.0 and 0.5, n = 3, 4) ceramics decreases with increasing temperature, which is attributed to

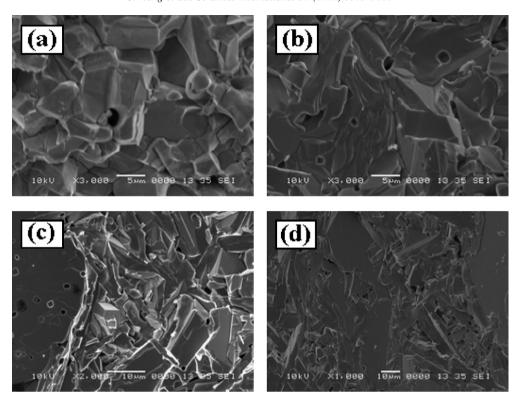


Fig. 2. Cross-section SEM images of the $SrO(SrTiO_3)_n$ ceramics: (a) n = 1, (b) n = 2, (c) n = 3 and (d) n = 4.

the fact that residual polar/distorted clusters are absent when the temperature is far beyond Curie temperature.

Microwave dielectric parameters of the $SrO(Sr_{1-x}Ba_xTiO_3)_n$ (x = 0.0 and 0.5, n = 1-4) ceramics are also listed in Table 1.

For the $SrO(SrTiO_3)_n$ series, permittivity increases with increasing n, whereas Q value slightly decreases. Structurally, both permittivity and Q value of a material depend on its composition and crystal structure. For microwave dielectrics,

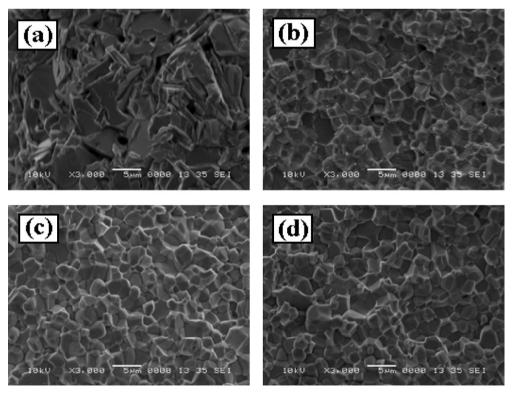
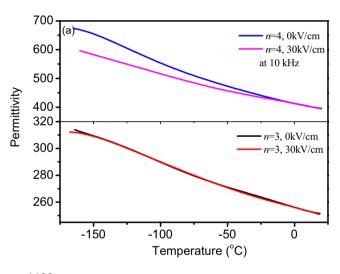



Fig. 3. Cross-section SEM images of the $SrO(Sr_{0.5}Ba_{0.5}TiO_3)_n$ ceramics: (a) n = 1, (b) n = 2, (c) n = 3 and (d) n = 4.

Table 1 Dielectric properties of the $SrO(Sr_{1-x}Ba_xTiO_3)_n$ (x = 0 and 0.5, n = 1-4) ceramics.

Samples	Tunability (30 kV/cm) (%)		Resonant frequency (GHz)	3	Q value
	at −150 °C	at −100 °C			
x = 0.0, n = 1	_	_	6.531	32.6	1963
x = 0.0, n = 2	_	_	3.448	59.2	1359
x = 0.0, n = 3	_	_	3.214	79.1	1290
x = 0.0, n = 4	11.35	6.49	2.519	102.3	1126
x = 0.5, n = 1	_	_	6.733	39.9	383
x = 0.5, n = 2	_	_	4.518	86.5	495
x = 0.5, n = 3	6.05	3.75	4.034	145.5	853
x = 0.5, n = 4	23.61	5.27	3.157	210.4	553

polarizability dominates permittivity [23]. As n increases, the SrO content decreases, so that average ionic polarizability increases, thus increasing permittivity [14]. The intrinsic loss strongly depends on permittivity [24]. The Q values of our samples are lower than those reported by Wise et al. [14], which may be related to the purity of raw materials, and second phases and porosity of the ceramics. Compared to that of SrO(Sr-TiO₃) $_n$, permittivity of the SrO(Sr_{0.5}Ba_{0.5}TiO₃) $_n$ ceramics is higher, whereas their Q values are markedly lower. Because the

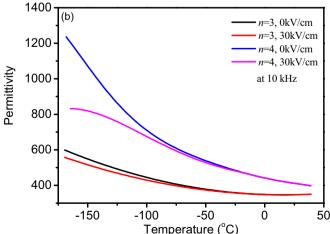


Fig. 4. Temperature dependences of permittivity of the $SrO(Sr_{1-x}Ba_xTiO_3)_n$ (x = 0.0 and 0.5, n = 3, 4) ceramics: (a) x = 0.0 and (b) x = 0.5.

polarizability of Ba²⁺ ($1.55 \times 10^{-30} \, \text{m}^3$) is higher than that of Sr²⁺ ($0.864 \times 10^{-30} \, \text{m}^3$) [25], Ba²⁺ substitution for Sr²⁺ causes an increase in permittivity. The low Q value of the SrO(Sr_{0.5}Ba_{0.5}TiO₃) $_n$ series is probably attributed to the formation of the Ba $_x$ Sr_{2- $_x$}TiO₄ phase.

4. Conclusions

For $SrO(SrTiO_3)_n$ series, Sr_2TiO_4 was single phase, while $Sr_3Ti_2O_7$ and $Sr_4Ti_3O_{10}$ were not single phase. $Sr_4Ti_3O_{10}$ appeared in the samples with $n \geq 2$ as either a major phase (n = 3, 4) or a second phase (n = 2). $SrTiO_3$ appeared in the sample with n = 3 and its amount increased as n increased. Ba^{2+} substitution for Sr^{2+} caused the formation of $SrTiO_3$ and $Ba_xSr_{2-x}TiO_4$. Meanwhile, it promoted the formation of equiaxed grains instead of block-like ones. $SrO(Sr_{1-x}Ba_{x-1}TiO_3)_n$ (n = 1, 2) had no tunability over -165 to 50 °C. As n increased, the tunability increased. Compared to $SrO(SrTiO_3)_n$ series, $SrO(Sr_{0.5}Ba_{0.5}TiO_3)_n$ series had higher permittivity and higher tunability, but lower Q value.

Acknowledgements

This research was supported by Zhejiang Provincial Science Foundation (No. Y6110475) and the undergraduate innovative project of Zhejiang Province (No. 2010R409016).

References

- [1] S. Ruddlesden, P. Popper, Acta Cryst. 10 (8) (1957) 538-539.
- [2] S. Ruddlesden, P. Popper, Acta Cryst. 11 (1) (1958) 54-55.
- [3] P. Balaya, M. Ahrens, L. Kienle, J. Maier, B. Rahmati, S.B. Lee, W. Sigle, A. Pashkin, C. Kuntscher, M. Dressel, J. Am. Ceram. Soc. 89 (9) (2006) 2804–2811.
- [4] Y. Hu, O. Tan, J. Pan, H. Huang, W. Cao, Sens. Actuatators B: Chem. 108 (1–2) (2005) 244–249.
- [5] S. Burnside, J.E. Moser, K. Brooks, M. Grätzel, D. Cahen, J. Phys. Chem. B 103 (43) (1999) 9328–9332.
- [6] J. Li, S. Luo, M. Alim, Mater. Lett. 60 (6) (2006) 720–724.
- [7] J. Mateu, J.C. Booth, S.A. Schima, IEEE T. Microw. Theory 55 (2) (2007) 391–396.
- [8] M. Moreira, J. Andres, V. Longo, M. Li, J. Varela, E. Longo, Chem. Phys. Lett. 473 (4–6) (2009) 293–298.
- [9] X. Zhang, K. Huo, L. Hu, Z. Wu, P.K. Chu, J. Am. Ceram. Soc. 93 (9) (2010) 2771–2778.

- [10] T. Xian, H. Yang, J.F. Dai, Z.Q. Wei, J.Y. Ma, W.J. Feng, Mater. Lett. 65 (21–22) (2011) 3254–3257.
- [11] J. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. Li, S. Choudhury, W. Tian, M. Hawley, B. Craigo, Nature 430 (7001) (2004) 758–761.
- [12] J. Haeni, Appl. Phys. Lett. 78 (21) (2001) 3292.
- [13] N. Zhou, G. Chen, H. Zhang, C. Zhou, J. Alloys Compd. 477 (1–2) (2009) L17–L20.
- [14] P. Wise, I. Reaney, W. Lee, T. Price, D. Iddles, D. Cannell, J. Eur. Ceram. Soc. 21 (10–11) (2001) 1723–1726.
- [15] N. Orloff, W. Tian, C. Fennie, C. Lee, D. Gu, J. Mateu, X. Xi, K. Rabe, D. Schlom, I. Takeuchi, Appl. Phys. Lett. 94 (2009) 042908.
- [16] B.W. Hakki, P.D. Coleman, I.R.E Trans, Microw. Theory Tech. 8 (1960) 402
- [17] T. Hungria, A. Castro, J. Alloys Compd. 436 (1-2) (2007) 266-271.

- [18] K.H. Lee, Y.F. Wang, S.W. Kim, H. Ohta, K. Koumoto, Int. J. Appl. Ceram. Technol. 4 (4) (2007) 326–331.
- [19] Y.F. Wang, K.H. Lee, H. Ohta, K. Koumoto, Ceram. Int. 34 (4) (2008) 849–852.
- [20] Y. Wang, K.H. Lee, H. Hyuga, H. Kita, H. Ohta, K. Koumoto, J. Electroceram. 24 (2) (2010) 76–82.
- [21] X. Wang, H.L.-W. Chan, C.-L. Choy, J. Am. Ceram. Soc. 86 (10) (2003) 1809–1811.
- [22] J. Zhang, J. Zhai, X. Chou, J. Shao, X. Lu, X. Yao, Acta Mater. 57 (15) (2009) 4491–4499.
- [23] I.M. Reaney, I. David, J. Am. Ceram. Soc. 89 (7) (2006) 2063-2072.
- [24] R. Zurmuhlen, J. Petzelt, S. Kamba, G. Kozlov, A. Volkov, B. Gorshunov, D. Dube, A. Tagantsev, N. Setter, J. Appl. Phys. 77 (10) (1995) 5351–5364.
- [25] L. Pauling, Proc. Roy. Soc. A 114 (1927) 191.