

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 38 (2012) 5475–5479

Effect of Al₂O₃ on the microstructure and mechanical properties of Ti₃AlC₂/Al₂O₃ in situ composites synthesized by reactive hot pressing

J.F. Zhu, L. Ye*, L.H. He

Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China

Received 28 December 2011; received in revised form 4 March 2012; accepted 23 March 2012 Available online 1 April 2012

Abstract

 Ti_3AlC_2/Al_2O_3 in situ composites with different Al_2O_3 contents were successfully synthesized from the powder mixture of Ti, TiC, Al and TiO_2 by a reactive hot-pressing method at 1350 °C. The effect of Al_2O_3 on the microstructure and mechanical properties of the composites was investigated in detail. The results indicate that the as-fabricated products mainly consist of Ti_3AlC_2 , Al_2O_3 and a small amount of TiC. With increasing the Al_2O_3 content, the flexural strength of Ti_3AlC_2/Al_2O_3 composites increase gradually, the fracture toughness reaches the peak value of $8.21 \text{ MPa m}^{1/2}$ as the Al_2O_3 content increasing to 9 wt%, the hardness attains the maximum value of 10.16 GPa for 12 wt% Al_2O_3 . The strengthening mechanism of the composites was also discussed.

© 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: B. Composites; C. Mechanical properties; D. Al₂O₃; Ti₃AlC₂

1. Introduction

 Ti_3AlC_2 is a layered machinable ceramic representative of $M_{n+1}AX_n$ phases (also called MAX), with n=1,2 or 3, where M is an early transition metal, A is an A-group element and X is C or N [1–4]. It combines both the merits of metals and ceramics. Like metals, it is good electrical and thermal conductive, relatively low hardness, and plastic at the high temperatures, and is easy to be machined by both electrical discharge method and conventional cutting tools. Like ceramics, it possesses high melting point, high modulus, low density, high thermal stability and good antioxidation [5,6]. In addition, Ti_3AlC_2 also has nice self-lubricating property. However, the potential application of Ti_3AlC_2 as a high temperature structural material is limited due to its low hardness and unsatisfactory strength [7,8].

Incorporation of a second phase is an effective way to overcome these weaknesses of MAX carbides [8–14]. Considering the high hardness and modulus, excellent chemical

* Corresponding author. Tel.: +86 02986131687; fax: +86 02986168188.

E-mail addresses: zhujf@sust.edu.cn (J.F. Zhu), lanye0508@163.com

stability and approximate thermal expansion coefficient, Al₂O₃ is chosen as reinforcement to increase the mechanical properties of MAX, such as Ti₃SiC₂ [9,10] and Ti₃AlC₂. Wu et al. [11] reported that the addition of Al₂O₃ into Ti₃AlC₂ matrix was shown to enhance its friction behavior and wear resistance. Chen et al. [12,13] successfully fabricated Ti₃AlC₂/ Al₂O₃ directly from the powder mixture of Ti, C, Al and Al₂O₃ by in situ hot pressing/solid-liquid reaction process at 1500 °C, In comparison to monolithic Ti₃AlC₂, the Ti₃AlC₂/Al₂O₃ composites are substantially improved in the hardness, toughness, compressive strength, and flexural strength. However, the large size and inhomogeneous distribution of the Al₂O₃ particles hindered further increase of its mechanical properties. Recently, Yeh et al. [14] successfully prepared the Ti₃AlC₂/Al₂O₃ and Ti₂AlC/Al₂O₃ composites through in situ synthesis in the mode of self-propagating high-temperature synthesis (SHS) in Ti-Al-C-TiO2 systems, but work on the strengthening Ti₂AlC and Ti₃AlC₂ by incorporation of second phase Al₂O₃ is not reported. However, to our knowledge, the method of in situ reactive hot pressing has not been applied into the synthesis of the Ti₃AlC₂ matrix composites. The reactive hot pressing represents an in situ processing technique for the fabrication of composites, which takes the advantage of low energy requirement, contaminant-free interface.

So the objective of the present work is to fabricate Ti₃AlC₂/Al₂O₃ composites in the Ti–TiC–Al–TiO₂ system using the in situ reactive hot pressing technique. The effect of the content of in situ formed Al₂O₃ on the phase composition, microstructure, density and room-temperature mechanical properties including hardness, flexural strength, and fracture toughness of the composites were investigated in detail. And the strengthening mechanism of the composites was also discussed.

2. Experimental

Ti (50 μ m, 99.3% purity), TiC (75 μ m, 99.05% purity), Al (75 μ m, 99.5% purity), and TiO₂ (25 μ m, 99.5% purity) powders were used as the starting materials. For the preparation of Ti₃AlC₂/Al₂O₃ in situ composites, the powder mixtures containing Al, TiO₂, Ti, and TiC were formulated with stoichiometry given according to the following reaction. Considering the vaporization of Al at high temperatures, the content of TiC was reduced to 90 wt% and the content of Al was increased to 10 wt% in the starting powders. The detailed compositions of the samples were listed in Table 1.

$$x\text{TiC} + (x-3)\text{Ti} + (x+4)\text{Al} + 3\text{TiO}_2 \rightarrow x\text{Ti}_3\text{AlC}_2 + 2\text{Al}_2\text{O}_3$$
(1)

First, the blend of powders was ball milled in alcohol for 1 h and then dried at 50 °C for several hours. Then the milled powders were compacted uniaxially under 10 MPa in a graphite mold and coated with BN inside. The compacted samples were hot press sintered in vacuum (less than 6.0×10^{-2} Pa) at a rate of 5 °C/min to 1350 °C and held for 2 h under a pressure of 16 MPa. Finally, the samples were cooled down to room temperature in the furnace. The surfaces of samples were ground to remove graphite layer. The phase analysis of the sintered bulks was identified by X-ray diffraction (XRD) using a diffractometer with Cu K α radiation (D/max-2200PCX). The microstructures of the samples were investigated by scanning electron microscope (SEM, JEOL JSM-6700F) and energy dispersive spectroscopy (EDS).

The measurements of all the mechanical properties were performed at room temperature by averaging 6 individual measurements. The sample densities were measured by Archimedes' method. Hardness measurements were performed on the HXD-1000 tester (Shanghai Second Optical Ltd., China) with a diamond indenter under a 1000 N load for 15 s. The three-point bending flexural strength tests were conducted by

Table 1
The compositions of the samples (wt%).

Specimens No.	Ti	TiC	Al	TiO ₂	Theoretical targeted Al ₂ O ₃ content
YL0 ^a	28.49	54.87	15.68	1.17	0
YL5	24.50	52.67	17.39	5.85	5
YL9	20.79	50.61	18.99	10.22	9
YL12	17.95	48.99	20.23	13.61	12
YL15	14.62	47.19	21.64	17.47	15

^a YLXX refers to the sample number, and XX is the targeted weight percent of Al_2O_3 phase.

the PC-1036PC (Perfect Instrument Co. Ltd., Taiwan, China) material tester with a span of 20 mm at a cross-head speed of 0.5 mm/min with the specimen dimensions of $4 \text{ mm} \times 4 \text{ mm} \times 30 \text{ mm}$. The fracture toughness $K_{\rm IC}$ was measured on the PC-1036PC testing machine by using the single edge pre-cracked beam (SEPB) method with a notch depth of 0.4W (W is the width of specimen), at a cross-head speed of 0.05 mm/min, with a loading span of 20 mm. The flexural strength and fracture toughness were calculated with the following equations, respectively.

$$\sigma = \frac{3PL}{2hh^2} \tag{2}$$

$$K_{\rm IC} = Y \times \frac{3PLa^{1/2}}{2BW^2} \tag{3}$$

3. Results and discussion

The X-ray diffraction patterns of monolithic Ti₃AlC₂ and Ti₃AlC₂/Al₂O₃ composites hot pressed at 1350 °C for 2 h are shown in Fig. 1. It can be clearly seen that the monolithic Ti_3AlC_2 from the sample YL0 of Ti:TiC:Al = 1.2:1.8:1.1 (in mole ratio) is composed of Ti₃AlC₂ and small amount of TiC (Fig. 1(a)). The previous work [15] also revealed that the TiC often existed in the final products as an intermediate phase for synthesis of Ti₂AlC and Ti₃AlC₂ due to the short reaction time and large amounts of reaction heat released from the thermal explosion reaction between the Ti and C. When small amount of 5.85 wt% TiO₂ was incorporated in the initial materials (Fig. 1(b)), a small amount of Al₂O₃ phase was also found in addition to the Ti₃AlC₂ phase. It is worth noting that that the assintered sample is composed of dominant Ti₃AlC₂ and a small amount of Al₂O₃ and TiC, and the ratio of Al₂O₃ content to Ti₃AlC₂ content increases with increasing TiO₂ amount in the initial materials (Fig. 1(c)-(e)). Compared with the previous works [4,14], the synthesis temperature of 1350 °C in this work is much lower than that of 1400 °C. The presence of the abovementioned phases in the composite samples confirms the

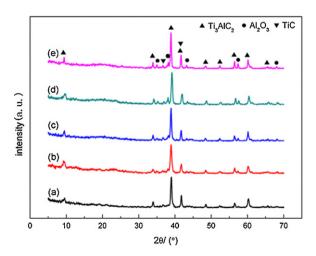


Fig. 1. X-ray diffraction patterns of the Ti_3AlC_2/Al_2O_3 composites with various Al_2O_3 contents. (a) 0 wt%; (b) 5 wt%; (c) 9 wt%; (d) 12 wt%; and (e) 15 wt%.

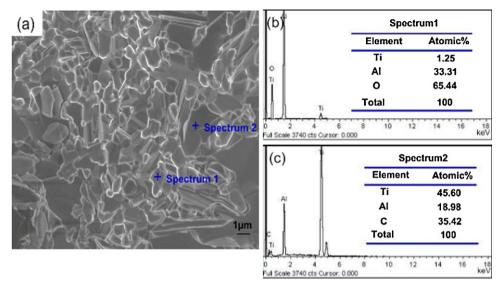


Fig. 2. (a) SEM micrographs and (b) and (c) EDS analysis results of the fracture surface of the Ti₃AlC₂/Al₂O₃ with 9 wt% Al₂O₃ composites sintered at 1350 °C.

feasibility of the overall reaction expressed as Eq. (1). The in situ formation of Al₂O₃ along with Ti₃AlC₂ is resulted from the thermite reaction of Al and TiO2. It should be noted that the thermite reaction between Al and TiO₂ is a highly exothermic reaction, which releases large amounts of reaction heat. The increasing temperature facilitates faster and more complete diffusion of the reactants during reactive hot pressing, leading to a more uniform distribution of the second phase, Al₂O₃, and lower synthesis temperature of 1350 °C. The presence of TiC in the final product has often been observed in the formation of Ti₃AlC₂ and Ti₂AlC as an intermediate phase. So the reaction (1) could be divided into following reactions:

$$Ti + Al \rightarrow TiAl$$
 (4)

$$3\text{TiO}_2 + 4\text{Al} \rightarrow 2\text{Al}_2\text{O}_3 + 3\text{Ti} \tag{5}$$

$$TiAl + 2TiC \rightarrow Ti_3AlC_2$$
 (6)

Fig. 2 displays the SEM micrograph of the fracture surface and the EDS analysis of Ti₃AlC₂/9 wt% Al₂O₃ composite. It is obvious that the material consists of the lamellar matrix phase and the particle-like second phase. The size of particles is about 1 µm, the platelike matrix grains are closely packed into a laminated configuration, which is characteristic of the layered ternary carbides, Ti₃AlC₂. Combined with the EDS analysis, the chemical composition indicates that the particle phase is enriched with Al, O and a small amount of Ti, and the atomic compositions of Al and O are 33.41% and 65.44% in mole ratio, respectively, which is close to stoichiometric Al₂O₃. From Fig. 1(c), for the lamellar matrix phase the quantitative atomic ratio of Ti:Al:C is 45.60:19.89:35.42, which is quite consistent with the predicted one of 3:1:2 for Ti₃AlC₂. Therefore, the composite is mainly composed of the matrix Ti₃AlC₂ and the second reinforcement phase, Al₂O₃. The latter one disperses at the grain boundaries of the matrix phase.

Fig. 3 displays the SEM micrographs of the in situ reactive hot pressed Ti₃AlC₂/Al₂O₃ composites with different Al₂O₃ contents. When the Al₂O₃ content is 5 wt%, the matrix Ti₃AlC₂ are coarse with a grain size of 10-15 µm (Fig. 2(a)). When increasing the Al₂O₃ content to 9 wt%, the size of the matrix grain decreases significantly to 5-10 µm, and Al₂O₃ grains disperses uniformly in the matrix (Fig. 2(b)). With further increasing the Al₂O₃ content to 15 wt%, surface pores and local agglomeration of Al₂O₃ grains tend to occur at the grain boundaries (Fig. 2(c)). It seems that too many Al₂O₃ grains would hinder the densification process of the composites.

Fig. 4 shows that the density and hardness of Ti₃AlC₂/Al₂O₃ composites with different Al₂O₃ contents. With increasing Al₂O₃ contents, the density of the Ti₃AlC₂/Al₂O₃ composites gradually decreases, due to the fact that the density of Al₂O₃ is smaller than that of Ti₃AlC₂. It is worth noting that the measured densities of all synthesized Ti₃AlC₂/Al₂O₃ composites are 99-99.7% of the theoretical density, which indicates that the as fabricated samples are nearly full dense. From Fig. 4, it can also be seen that with increasing Al₂O₃ content, the Vickers hardness of Ti₃AlC₂/Al₂O₃ gradually increases. It is reported that the hardness of monolithic Ti₃AlC₂ is about 3.5– 4.7 GPa [4]. In this study, the maximum value of hardness reaches 10.16 GPa as the Al₂O₃ content increases to 12 wt%, which is almost 3 times of that of the monolithic Ti₃AlC₂. This partially derives from the higher hardness of the reinforcing Al₂O₃ phase, and partially from the refined grain size of the composites resulted from the second phase of Al₂O₃. However, when the Al_2O_3 content is high enough (15 wt%), the hardness decreases, which is attributed to the loose microstructure caused by too many Al₂O₃ content, which is consistent with the above SEM results.

Fig. 5 shows the flexural strength and fracture toughness of the Ti₃AlC₂/Al₂O₃ composites with different Al₂O₃ contents. It can be clearly seen that the flexural strength increases from 497 to 720 MPa as increasing Al₂O₃ content from 0 to 15 wt%. However, the $K_{\rm IC}$ increases with increasing the Al₂O₃ content, and reach a maximum value of 8.2 MPa m^{1/2} at 9 wt% Al₂O₃ content, and then decreases dramatically. Combined with the SEM analysis results (Fig. 3), the fracture toughness of the Ti₃AlC₂/Al₂O₃ composites begins to

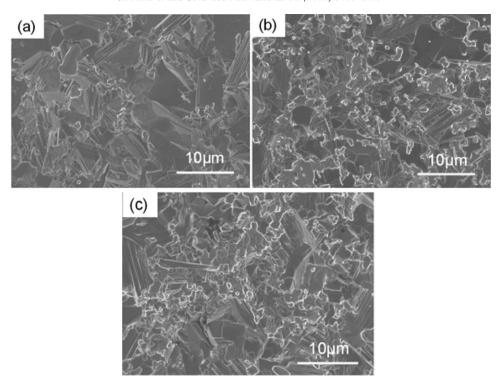


Fig. 3. SEM microstructures of the Ti₃AlC₂/Al₂O₃ composites with different Al₂O₃ contents. (a) 5 wt%; (b) 9 wt%; and (c) 15 wt%.

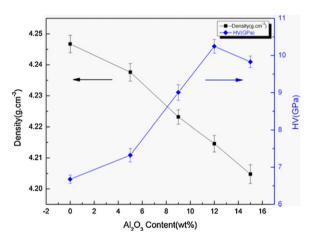


Fig. 4. Density and hardness of the Ti_3AlC_2/Al_2O_3 composites with different Al_2O_3 contents.

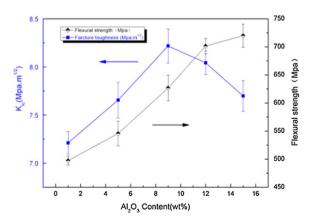


Fig. 5. Flexural strength and fracture toughness of the Ti₃AlC₂/Al₂O₃ composites with different Al₂O₃ contents.

decrease when the Al₂O₃ content is exceeded to 9 wt%, due to the agglomeration of the Al_2O_3 phase. So the optimum Al_2O_3 concentration is 9 wt%, at which the flexural strength and the fracture toughness are increased by 25.95% and 13.86%, respectively. The typical properties of the composite with 9 wt% Al₂O₃ are summarized in Table 2. For comparison, the results of the monolithic Ti₃AlC₂ fabricated by the solidliquid reaction synthesis and simultaneous in situ hot pressing process in Ref. [4], Ti₃AlC₂/Al₂O₃ composite fabricated from the powder mixture of Ti, C, Al and Al₂O₃ by in situ hot pressing process in Ref. [12] and Ti₃AlC₂/TiC-Al₂O₃ composites obtained by in situ synthesis in the mode of thermal explosion from 3TiO₂-5Al-2C system in Ref. [16] are also included. It can be seen that flexural strength and fracture toughness of the present sample are much higher than those of the monolithic Ti₃AlC₂ and Ti₃AlC₂/TiC-Al₂O₃ reported in Refs. [4] and [16], respectively. The fracture toughness is similar to that of the Ti₃AlC₂/Al₂O₃ composite reported in Ref. [12], and the hardness and flexural strength are much higher, which are resulted from the finer microstructure with uniform distribution. Compared with Ref. [16], the hardness of the present samples are much lower than Ti₃AlC₂/TiC-Al₂O₃ due to the higher content of Al₂O₃ in the latter.

The modification of the strength and fracture toughness is mainly attributed to the in situ formed Al_2O_3 . The previous work [10,12] revealed that the addition of Al_2O_3 would improve the mechanical properties due to its high hardness, 18 GPa, and high Young's modulus, 386 GPa. The fine grain size controlled by the presence of dispersed fine Al_2O_3 grains and sintering at relatively low temperature of 1350 °C is another important reason to strengthen the Ti_3AlC_2/Al_2O_3 composites.

Table 2 Summary of typical properties of the as-prepared Ti_3AlC_2/Al_2O_3 composite (with ~ 9 wt% Al_2O_3), together with monolithic Ti_3AlC_2 [4], $Ti_3AlC_2/TiC-Al_2O_3$ [16] and Ti_3AlC_2/Al_2O_3 composite [12] for comparison.

Properties	Flexural strength (MPa)	Fracture toughness (MPa m ^{1/2})	Density (g cm ⁻³)	Hardness (GPa)	References
Ti ₃ AlC ₂	340	7.2	4.24	3.5-4.7	[4]
Ti ₃ AlC ₂ /Al ₂ O ₃	500	8.8	_	5.5	[12]
Ti ₃ AlC ₂ /TiC-Al ₂ O ₃	466 ± 39	5.8 ± 0.3	_	13.3 ± 1.1	[16]
Ti ₃ AlC ₂ /Al ₂ O ₃	626 ± 30	8.2 ± 0.2	4.224	8.9 ± 0.2	In this work

4. Conclusions

The Ti_3AlC_2/Al_2O_3 composites were synthesized by the in situ hot pressing method under a pressure of 16 MPa at 1350 °C for 2 h based on the $Ti-TiC-Al-TiO_2$ system. The phases of the as-sintered samples are mainly made of small sized Ti_3AlC_2 and Al_2O_3 . The introduction of Al_2O_3 improves the hardness, fracture toughness and flexural strength of the composites. When the Al_2O_3 content is 9 wt%, the hardness, flexural strength and fracture toughness of the in situ composites increase by 62.18%, 25.95% and 13.86%, respectively.

Acknowledgements

This work was supported by the National Foundation of Natural Science, China (50802057), the Shaanxi Provincial Foundation of Natural Science, China (2010JM6014), and the Graduate Innovation Fund of Shaanxi University of Science and Technology.

References

- M.W. Barsoum, The M_{n+1}AX_n phases: a new class of solids; thermodynamically stable nanolaminates, Progress in Solid State Chemistry 28 (2000) 201–281.
- [2] M.W. Barsoum, M. Ali, T. El-Raghy, Processing and characterization of Ti₂AlC, Ti₂AlN and Ti₂AlC_{0.5}N_{0.5}, Metallurgical and Materials Transactions A 31 (2000) 1857–1865.
- [3] N.V. Tzenov, M.W. Barsoum, Synthesis and characterization of Ti₃AlC₂, Journal of the American Ceramic Society 83 (4) (2000) 825–832.
- [4] X.H. Wang, Y.C. Zhou, Microstructure and properties of Ti₃AlC₂ prepared by the solid–liquid reaction synthesis and simultaneous in situ hot pressing process, Acta Materialia 50 (2002) 3141–3149.

- [5] X.H. Wang, Y.C. Zhou, Layered machinable and electrically conductive Ti₂AlC and Ti₃AlC₂ ceramics, Journal of Materials Science and Technology 26 (05) (2010) 385–416.
- [6] Z.J. Lin, M.S. Li, J.Y. Wang, Y.C. Zhou, Influence of water vapor on the oxidation behavior of Ti₃AlC₂ and Ti₂AlC, Scripta Materialia 58 (2008) 29–32.
- [7] Y. Zou, Z.M. Sun, H. Hashimoto, S. Tada, Mechanical behavior of Ti₃AlC₂ prepared by pulse discharge sintering method, Materials Transactions 48 (2007) 2432–2435.
- [8] W.B. Zhou, B.C. Mei, J.Q. Zhu, Rapid synthesis of Ti₃AlC₂/TiB₂ composites by the spark plasma sintering (SPS) technique, Ceramics International 35 (2009) 3507–3510.
- [9] H.J. Wang, Z.H. Jina, Y. Miyamotob, Effect of Al₂O₃ on mechanical properties of Ti₃SiC₂/Al₂O₃ composite, Ceramics International 28 (2002) 931–934
- [10] Y. Luo, W. Pan, S. Li, R. Wang, J. Li, Fabrication of Al₂O₃-Ti₃SiC₂ composites and mechanical properties evaluation, Materials Letters 57 (2003) 2509–2514.
- [11] L. Wu, J.X. Chen, M.Y. Liu, Y.W. Bao, Y.C. Zhou, Reciprocating friction and wear behavior of Ti₃AlC₂ and Ti₃AlC₂/Al₂O₃ composites against AISI5200 bearing steel, Wear 266 (2009) 158–166.
- [12] J.X. Chen, Y.C. Zhou, Strengthening of Ti₃AlC₂ by incorporation of Al₂O₃, Scripta Materialia 50 (2004) 897–901.
- [13] J.X. Chen, Y.C. Zhou, H.B. Zhang, D.T. Wan, M.Y. Liu, Thermal stability of Ti₃AlC₂/Al₂O₃ composites in high vacuum, Materials Chemistry and Physics 104 (2007) 109–112.
- [14] C.L. Yeh, C.W. Kuo, Y.C. Chu, Formation of Ti₃AlC₂/Al₂O₃ and Ti₂AlC/Al₂O₃ composites by combustion synthesis in Ti–Al–C–TiO₂ systems, Journal of Alloys and Compounds 494 (2010) 132–136.
- [15] C.Q. Peng, C.A. Wang, Y. Song, Y. Huang, A novel simple method to stably synthesize Ti₃ AlC₂ powder with high purity, Materials Science and Engineering A 428 (2006) 54–58.
- [16] J.X. Chen, J.L. Li, Y.C. Zhou, In situ synthesis of Ti₃AlC₂/TiC-Al₂O₃ composite from TiO₂-Al-C system, Journal of Materials Science and Technology 22 (2006) 455-458.