

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICS INTERNATIONAL

Ceramics International 38 (2012) 6071-6074

www.elsevier.com/locate/ceramint

Short communication

Relaxor and strain behavior in BaTi_{1-x}(Li_{2/3}Nb_{2/3})_xO₃ ceramics

Shi Xiao ^a, Sen Deng ^a, Jingji Zhang ^{a,b,*}, Yilu Zhou ^a, Jiamin Tang ^a, Yidan Wang ^a, Lipeng Wang ^a, Hongfang Qi ^a, Jiangying Wang ^a

^a College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, PR China
^b Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Shanghai 200092, PR China
Received 26 March 2012; received in revised form 19 April 2012; accepted 19 April 2012

Available online 26 April 2012

Abstract

A new lead-free perovskite system of $BaTi_{1-x}(Li_{2/3}Nb_{2/3})_xO_3$ (x=0.02,0.05,0.07 and 0.10) has been synthesized by the mixed-oxide route. Temperature and frequency dependences of permittivity show a crossover from ferroelectric to relaxor behavior. For the samples with $x \ge 0.05$, the frequency-dependent T_m satisfying the Vögel–Fulcher formula indicates a relaxor behavior. The increase with orders of magnitude in E_a with respect to x is possibly ascribed to more Ba-vacancies. Remnant polarization and strain decrease with increasing x due to phase transformation from ferroelectric tetragonal to paraelectric pseudocubic at room temperature.

© 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Perovskite structure; Phase transition; Relaxor behavior; Strain behavior

1. Introduction

Growing awareness of the hazardous effect of lead on environment and human health initiated intensive research on lead-free piezoceramics [1]. Among several groups of lead-free candidates, barium titanate (BaTiO₃) is quite promising due to high strain at high electric field $\sim 1\%$ [2]. Unfortunately, it has large hysteresis, which blocks practical application [2].

The idea of incorporation ions to matrix is generally adopted to modify its properties. Because BaTiO₃ is the most easily compatible host compound for different dopants, both heterovalent [3] and isovalent [4] ionic substitution at equivalent sites can lead to remarkable changes in piezoelectric properties. Since the discovery of very high piezoelectric properties in Zr-doped BaTiO₃ single crystals [5], isovalent substitutions for Ba or/and Ti, such as (Ba_{1-x}Ca_x)TiO₃ [6], Ba(Zr,Ti)O₃ [7], (Ba,Ca)(Zr,Ti)O₃ [8] and (Ba_{1-x}Ca_x) (Ti_{0.96}Sn_{0.04})O₃ [9], have been studied extensively. In fact, though it has been reported that almost hysteresis-free high strain can be realized by isovalent substitutions, it is logical to

E-mail address: zjjtongji@gmail.com (J. Zhang).

explore others modifiers for their piezoelectric behavior. Recently, Khemakhem et al. [10] have reported that complex cation $(Zn_{1/3}Nb_{2/3})^{4+}$ substitution for Ti^{4+} exhibited a high d_{31} coefficient of 90 pC/N. However, piezoelectric properties of complex cation $(Li_{2/3}Nb_{2/3})^{4+}$ modified BaTiO₃ ceramics have not been reported.

It has been suggested [11] that heterovalent substitutions could induce a relaxor behavior at moderate substitution levels. Therefore, the aim of the present work is to investigate relaxor and strain behavior of complex cation (Li_{2/3}Nb_{2/3})⁴⁺ modified BaTiO₃ ceramics.

2. Experimental procedure

BaTi_{1-x}(Li_{2/3}Nb_{2/3})_xO₃ ceramics, where x = 0.02, 0.05, 0.07 and 0.10, were prepared through the conventional solid-state reaction method using starting chemicals of BaCO₃ (99.0%), TiO₂ (98.0%), Li₂CO₃ (98.0%) and Nb₂O₅ (99.5%). Mixtures based on the compositions of BaTi_{1-x}(Li_{2/3}Nb_{2/3})_xO₃ (x = 0.02, 0.05, 0.07 and 0.10) were ball-milled with zirconia media in ethanol for 24 h and dried at 110 °C for 12 h. After drying, the powders were calcined at 1150 °C for 4 h and then re-milled for 24 h. The calcined powders, mixed with 8 wt.% polyvinyl alcohol, were pressed into pellets at 100 MPa. The green pellets were kept at 550 °C for 6 h to remove the solvent and the binder.

^{*} Corresponding author at: College of Materials Science and Engineering, China Jiliang University, No. 258, Xueyuan Street, Hangzhou, Zhejiang 310018, PR China. Tel.: +86 571 86875613.

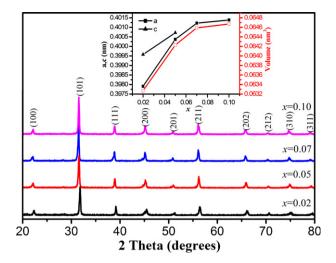


Fig. 1. XRD patterns of the $BaTi_{1-x}(Li_{2/3}Nb_{2/3})_xO_3$ ceramics. The inset presents the variation of the lattice parameters as functions of x.

BaTi_{1-x}(Li_{2/3}Nb_{2/3})_xO₃ ceramics were sintered at 1400 $^{\circ}$ C for 5 h in air.

Phase compositions of the ceramics were investigated by means of X-ray diffraction (XRD, Bruker D8 Advanced, Germany) with CuK_{α} radiation. Permittivity and loss tangent as functions of temperature were measured at frequencies from 1 kHz to 1 MHz in temperature range of 125–450 K, using a HP 4284A precision LCR meter (Agilent, Palo Alto, CA). Polarization versus electric field (P-E) hysteresis loops were measured in a silicon oil bath by applying an electric field of

triangular waveform at 10 Hz by means of a ferroelectric testing system (Radiant Precision Premier II Technology). MTI 2100 photonic sensor was used for strain measurement.

3. Results and discussion

XRD patterns of the BaTi_{1-x}(Li_{2/3}Nb_{2/3})_xO₃ ceramics are shown in Fig. 1. Analysis of the diffraction spectra reveals the tetragonal perovskite structure for the samples with $x \le 0.05$ and the pseudocubic one for those with $x \ge 0.07$ at room temperature. Lattice parameters calculated from the diffraction spectra fitted by space groups P4mm ($x \le 0.05$) or Pm3m ($x \ge 0.07$) are plotted in the inset of Fig. 1. The lattice parameters increase with increasing x. It can be explained that the ionic radius of Li⁺ (0.760 Å) and Nb⁵⁺ (0.640 Å) in 6-fold coordination is larger than that of Ti⁴⁺ (0.605 Å)[12]. Therefore, ionic radius of complex cation (Li_{2/3}Nb_{2/3})⁴⁺ is larger than that of Ti⁴⁺, which led to lattice expansion.

Temperature dependence of permittivity and loss tangent of all samples measured at different frequencies, varying from 1 kHz to 1 MHz, is displayed in Fig. 2. As x increases, the dielectric anomalous peaks of the $\text{BaTi}_{1-x}(\text{Li}_{2/3}\text{Nb}_{2/3})_x\text{O}_3$ ceramics, corresponding to the cubic-tetragonal phase transition (paraelectric–ferroelectric transition), are suppressed and broadened. The obvious reduction in the temperature at permittivity maxima (T_m) , as shown in Fig. 2, is attributed to the deterioration of ferroelectric long-range order [13]. It should be noted that the merger of all polymorph transformations occurs at x = 0.05, due to pinched phase transition [11].

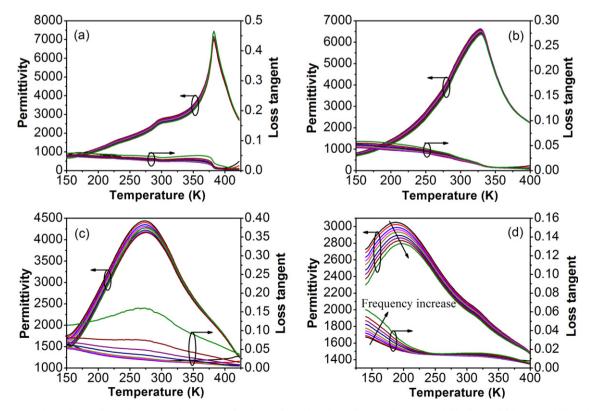


Fig. 2. Temperature dependence of permittivity and loss tangent for the $BaTi_{1-x}(Li_{2/3}Nb_{2/3})_xO_3$ ceramics: (a) x = 0.02, (b) x = 0.05, (c) x = 0.07 and (d) x = 0.10.

An evident dielectric diffuseness represented by extremely high dielectric peak, reflecting a strong frequency dispersion feature, is also shown in Fig. 2. The spectral features are strong dependent on composition. For the sample with x = 0.02, there is a strong and sharp dielectric peak at 381 K with no frequency dispersion, similar to that observed in pure BaTiO₃. As x increases, the strong and sharp dielectric peak gradually becomes a diffuse peak with frequency dispersion. A small shift in T_m toward high temperature with increasing frequency is observed in the compositions with $x \ge 0.05$, which is typical of the relaxor behavior. The relaxor state can be induced by a relatively low substitution levels, which is similar to others heterovalent substituted BaTiO₃, e.g. x = 0.075 for Ba_{1-x}Na_x[Ti_{1-x}Nb_x]O₃ [14], x = 0.055 for Ba_{1-x}La_x[Ti_{1-x}(Mg_{0.5}Ti_{0.5})_x]O₃ [15] and x = 0.06 for Ba_{1-x/2} $\square_{x/2}$ [Ti_{1-x}Nb_x]O₃ [16].

In many relaxors, the relationship between the probe frequency f and the temperature T_m can be described by the Vögel–Fulcher (VF) formula [17]:

$$f = f_0 \exp\left[\frac{-E_a}{k_B(T_m - T_{VF})}\right],\tag{1}$$

where f_0 is the Debye frequency, E_a the activation energy, and T_{VF} the freezing temperature of the polarization fluctuation. Frequency dependence of T_m of the compositions with x > 0.05 well fits to the VF formula (as shown in Fig. 3), whose fitting parameters are presented in the inset of Fig. 3. It is found that T_{VF} together with T_m markedly decrease as x increases, while E_a and f_0 increase with the order of magnitude, which is consistent with the trend observed in $Ba(Zr_vTi_{1-v})O_3$ system [11]. According to Shvartsma and lupascu [11], the relaxor behavior of BaTiO₃-based compositions originates from quenched random electric fields and randomly interacting polar nanoregions at temperatures much higher than T_m [18,19]. For Ba(Zr_vTi_{1-v})O₃ relaxor, the role of random fields is not obvious. Thus we can conclude that the relaxor behavior of the $BaTi_{1-r}(Li_{2/3}Nb_{2/3})_rO_3$ system is mainly dominated by randomly interacting polar nanoregions. There is a nominal excess of cations in B-site, therefore A-site vacancies are required and the

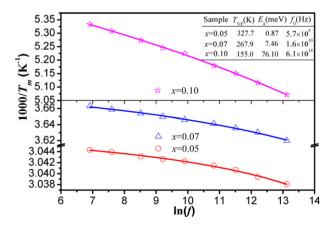


Fig. 3. Frequency dependent $1/T_m$ of the $\mathrm{BaTi}_{1-x}(\mathrm{Li}_{2/3}\mathrm{Nb}_{2/3})_x\mathrm{O}_3$ ceramics. The symbols indicate the experimental data and the solid lines are the fitting curves using VF relation. The inset shows the fitting results according to the VF formula.

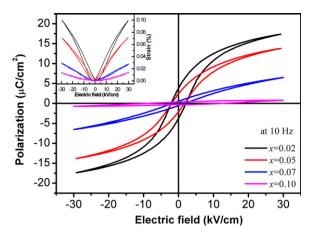


Fig. 4. P-E hysteresis loops of the BaTi_{1-x}(Li_{2/3}Nb_{2/3})_xO₃ ceramics measured at room temperature. The inset presents S-E curves of the BaTi_{1-x}(Li_{2/3}Nb_{2/3})_xO₃ ceramics.

exact stoichiometry becomes $Ba \bigsqcup_{x/3} Ti_{1-x}(Li_{2/3}Nb_{2/3})_x O_{3+\delta}$, where \bigsqcup corresponds to Ba-vacancies. The compositions with high substitution levels have a high E_a , which may be ascribed to more Ba-vacancies. The more Ba-vacancies cause a weak interaction between polar nanoregions [20], which contributes to an additional relaxation process.

P-E ferroelectric hysteresis loops of the BaTi_{1-x}(Li_{2/3} Nb_{2/3})_xO₃ ceramics measured at room temperature and a field of 30 kV/cm are exhibited in Fig. 4. It is clear that S-shaped loops with high remnant polarization (P_r) are observed for the samples with $x \le 0.05$. As x increases, the loops start to tilt and become slim. The profiles of P-E curve are closely related to crystalline structure of the samples. The compositions with $x \le 0.05$ have ferroelectric tetragonal phase at room temperature, as shown in Figs. 1 and 2, thus saturated polarization loops with high P_r are obtained. For those with $x \ge 0.07$, there exists paraelectric pseudocubic phase and T_m is below room temperature. A nonlinear P-E curve implies a ferroelectric relaxor behavior due to the existence of polar nanoregions above T_m [21].

The unipolar strain–electric field (S–E) curves of the BaTi $_{1-x}$ (Li $_{2/3}$ Nb $_{2/3}$) $_x$ O $_3$ ceramics are shown in the inset of Fig. 4. The unipolar strain level is \sim 0.10% at 30 kV/cm for the sample with x = 0.02. The hysteretic strain is possibly associated with domain switching [22]. As x increases, the strain is decreased, accompanied by decreasing hysteresis. The compositions with high substitution levels (x \geq 0.07) do not show any strain–field hysteresis, but exhibit just electrostriction typical for paraelectric state.

4. Conclusions

Only single perovskite structure was observed in the $\text{BaTi}_{1-x}(\text{Li}_{2/3}\text{Nb}_{2/3})_x\text{O}_3$ ceramics with $0.02 \le x \le 0.10$, which transformed from tetragonal to pseudocubic structure at room temperature with increasing x. Meanwhile, the $\text{Bai}_{1-x}(\text{Li}_{2/3}\text{Nb}_{2/3})_x\text{O}_3$ ceramics experienced a transformation from ferroelectric to paraelectric phase. For the samples with $x \ge 0.05$, the permittivity exhibited relaxor behavior with the frequency dependence of T_m obeying the VF formula. The compositions

with high substitution levels had a high E_a , which may be ascribed to more Ba-vacancies. Such high E_a implied a weak interaction between polar nanoregions. Remnant polarization and strain decrease with increasing x due to the change in crystalline structure.

Acknowledgements

This research was supported by China Postdoctoral Science Foundation (No. 20110490695), Zhejiang Provincial Science Foundation (No. Y6110475) and the Research Fund for higher Education of Zhejiang Province (No. 01101158).

References

- Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics, Nature 432 (7013) (2004) 84–87
- [2] E. Burcsu, G. Ravichandran, K. Bhattacharya, Large strain electrostrictive actuation in barium titanate, Applied Physics Letters 77 (11) (2000) 1698– 1700.
- [3] M. Chen, Q. Xu, B.H. Kim, B.K. Ahn, J.H. Ko, W.J. Kang, O.J. Nam, Structure and electrical properties of (Na_{0.5}Bi_{0.5})_{1-x}Ba_xTiO₃ piezoelectric ceramics, Journal of the European Ceramic Society 28 (4) (2008) 843–849.
- [4] C. Ang, Z. Yu, Z. Jing, R. Guo, A.S. Bhalla, L.E. Cross, Piezoelectric and electrostrictive strain behavior of Ce-doped BaTiO₃ ceramics, Applied Physics Letters 80 (18) (2002) 3424–3426.
- [5] P.W. Rehrig, S.-E. Park, S. Trolier-McKinstry, G.L. Messing, B. Jones, T.R. Shrout, Piezoelectric properties of zirconium-doped barium titanate single crystals grown by templated grain growth, Journal of Applied Physics 86 (3) (1999) 1657–1661.
- [6] X. Wang, H. Yamada, C.N. Xu, Large electrostriction near the solubility limit in BaTiO₃–CaTiO₃ ceramics, Applied Physics Letters 86 (2) (2005) 022905.
- [7] Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Piezoelectric and strain properties of $Ba(Ti_{1-x}Zr_x)O_3$ ceramics, Journal of Applied Physics 92 (3) (2002) 1489–1493.

- [8] W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics, Physical Review Letters 103 (25) (2009) 257602.
- [9] W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Large piezoelectric coefficient in (Ba_{1-x}Ca_x)(Ti_{0.96}Sn_{0.04})O₃ lead-free ceramics, Journal of the American Ceramic Society 94 (12) (2011) 4131–4133.
- [10] L. Khemakhem, A. Maalej, A. Kabadou, A. Ben Salah, A. Simon, M. Maglione, Dielectric ferroelectric and piezoelectric properties of BaTi_{0.975}(Zn_{1/3}Nb_{2/3})_{0.025}O₃ ceramic, Journal of Alloys and Compounds 452 (2) (2008) 441–445.
- [11] V.V. Shvartsman, D.C. Lupascu, Lead-free relaxor ferroelectrics, Journal of the American Ceramic Society 95 (1) (2012) 1–26.
- [12] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica. Section A, Crystal Physics, Diffraction, Theoretical and General Crystallography 32 (5) (1976) 751–767.
- [13] H. Yu, Z.G. Ye, Dielectric properties and relaxor behavior of a new (1-x)BaTiO₃-xBiAlO₃ solid solution, Journal of Applied Physics 103 (3) (2008) 034114.
- [14] H. Khemakhem, A. Simon, R.V.D. Mühll, J. Ravez, Relaxor or classical ferroelectric behaviour in ceramics with composition Ba_{1-x}Na_x. Ti_{1-x}Nb_xO₃, Journal of Physics: Condensed Matter 12 (2000) 5951–5959.
- [15] A. Salak, M. Seabra, V. Ferreira, Evolution from ferroelectric to relaxor behavior in the (1-x)BaTiO₃-xLa(Mg_{1/2}Ti_{1/2})O₃ system, Ferroelectrics 318 (1) (2005) 185–192.
- [16] R. Farhi, M. El Marssi, A. Simon, J. Ravez, Relaxor-like and spectroscopic properties of niobium modified barium titanate, European Physical Journal B 18 (4) (2000) 605–610.
- [17] D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Freezing of the polarization fluctuations in lead magnesium niobate relaxors, Journal of Applied Physics 68 (6) (1990) 2916–2921.
- [18] R. Pirc, R. Blinc, Spherical random-bond-random-field model of relaxor ferroelectrics, Physical Review B 60 (19) (1999) 13470–13478.
- [19] W. Kleemann, The relaxor enigma-charge disorder and random fields in ferroelectrics, Journal of Materials Science 41 (1) (2006) 129–136.
- [20] H. Ogihara, C.A. Randall, S. Trolier-McKinstry, Weakly coupled relaxor behavior of BaTiO₃–BiScO₃ ceramics, Journal of the American Ceramic Society 92 (1) (2009) 110–118.
- [21] L.E. Cross, Relaxor ferroelectrics, Ferroelectrics 76 (1) (1987) 241–267.
- [22] S.E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, Journal of Applied Physics 82 (4) (1997) 1804–1811.