

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 38 (2012) 6197-6201

www.elsevier.com/locate/ceramint

Enhanced red-emitting by charge compensation in Eu³⁺-activated Ca₂BO₃Cl phosphors

Fan Yang^{a,b}, Yujun Liang^{a,b,*}, Mingyu Liu^b, Xuejing Li^b, Nan Wang^b, Zhanggen Xia^b

^aEngineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, People's Republic of China ^bFaculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China

Received 12 March 2012; received in revised form 21 April 2012; accepted 21 April 2012 Available online 4 May 2012

Abstract

Eu³⁺-activated Ca₂BO₃Cl with different charge compensation approaches were synthesized by the solid state reaction method, and systematically characterized by photoluminescence excitation and emission spectra, concentration quenching and CIE 1931 chromaticity coordinates at room temperature. All the samples show the characteristic red emission of Eu³⁺ ions with good CIE chromaticity coordinates. The relative emission intensities of Eu³⁺ (${}^5D_0 \rightarrow {}^7F_2$) in Ca₂BO₃Cl:Eu³⁺ phosphors with Li, Na, K introduced as charge compensators are enhanced about 2.1, 1.6 and 1.5 times than that of direct charge balanced. Such difference is considered to be due to the different ion radii effect on the spin–orbit couplings and crystal field of Eu³⁺ ions. These results show that Ca_{2-1.5x}BO₃Cl:Eu³⁺_x and Ca_{2-2x}BO₃Cl, Eu³⁺_x, M_x^+ (x=0.04, M=Li, Na, K) phosphors exhibit potential applications in the field of solid state illumination. © 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Photoluminescence; Charge compensation; Europium ions; Ca2BO3Cl

1. Introduction

The red luminescence of Eu³⁺ ions has been extensively studied as an activator ion because of its distinct 4f–4f transitions. The f-electrons of Eu³⁺ ions are well shielded from the chemical environment and own almost retained atomic character [1,2]. In consequence, Eu³⁺ ions have been used in most commercial red phosphors. Currently, the mainly commercial red phosphor is Y₂O₂S:Eu³⁺ which shows chemical instability and low absorption efficiency in the near ultraviolet region [3,4]. So the search for new red phosphors with chemical stability and high photoluminescence efficiency is an attractive and challenging task.

Borates have been extensively investigated due to their high thermal, chemical stability and strong absorption in the near ultraviolet region. Rare earth doped borate phosphors have considerable practical applications in various devices such as solid-state lasers, optical communication, plasma display panel

E-mail address: yujunliang@sohu.com (Y. Liang).

(PDP) and light-emitting diode (LED) [5-8]. The crystal structure of Ca₂BO₃Cl was first reported by Zak and Hanic [9] in 1976. Until recently, photoluminescence properties of rare earth doped Ca₂BO₃Cl phosphors such as Ca₂BO₃ $Cl:Eu^{2+}$ [10], $Ca_2BO_3Cl:Ce^{3+}$ [11] and $Ca_2BO_3Cl:Eu^{2+}$, Ce³⁺ [12.13] have been investigated by many researchers. However, to the best of our knowledge, there is no report devoted to the photoluminescence properties of Eu³⁺-activated Ca₂BO₃Cl phosphors until now. Generally, when a metal ion is substituted for an element with a different valency in the matrix, the charge compensator is needed by using ions such as Li⁺, Na⁺ or K⁺ [14]. In 2007, J. Liu et al. [15] investigated photoluminescence by charge compensation in the phosphor system CaMoO₄:Eu³⁺ and found that the efficient charge compensator can enhance the luminescence intensity. Subsequently, S.K. Shi et al. [16] have studied the effects of charge compensation on the luminescence behavior of Eu³⁺activated CaWO₄ phosphors. Additionally, S. Choi et al. [17] discussed the luminescence properties by the addition of charge compensators in red-emitting Eu3+-activated $Ca_3Sr_3(VO_4)_4$.

In this work, Ca₂BO₃Cl:Eu³⁺ phosphors were firstly prepared by our group. In order to enhance the luminescence

^{*}Corresponding author at: Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China. Tel.: +86 27 67884814; fax: +86 27 67883733.

intensity of the phosphors, different charge compensation approaches were applied in $\text{Ca}_2\text{BO}_3\text{Cl}:\text{Eu}^{3+}.$ The effects of charge compensation on the luminescence properties have also been systematically discussed. Furthermore, the performance of the phosphors has also been compared with the commercial red phosphor $Y_2\text{O}_2\text{S}:\text{Eu}^{3+}.$ The results indicate that $\text{Eu}^{3+}\text{-activated Ca}_2\text{BO}_3\text{Cl}$ is a promising red phosphor for solid state illumination.

2. Experimental

A series of Eu^{3+} -activated Ca_2BO_3Cl powder samples were synthesized by the conventional solid state reaction. $CaCO_3$ (99.9%), $CaCl_2$ (99.9%), Eu_2O_3 (99.99%) and H_3BO_3 (A.R) were used as raw materials. The stoichiometric amounts of starting materials were weighted and thoroughly mixed in an agate mortar; the mixtures were then put in an alumina crucible and calcined at 900 °C for 4 h in air. In some cases, appropriate amount of Li_2CO_3 (99.9%), Na_2CO_3 (99.9%) or K_2CO_3 (99.9%) was added as the charge compensator. Stoichiometric amounts of Y_2O_3 (99.99%), elemental sulfur (S) (99.9%), Eu_2O_3 (99.99%) and the flux Na_2CO_3 (99.9%) were intimately ground and heated at 1100 °C in a reduced atmosphere for 2 h according to Ref. [18].

The crystal structure of the phosphors were characterized by X-ray powder diffractometer (XRD) (Bruker D8 Focus) with Cu-k α (λ =1.540598 Å) radiation at 40 kV and 40 mA. The lattice parameters of the phosphors are calculated by the MDI Jade 5.0 software which is based on least-square method. Excitation and emission spectra were measured by the fluorescence spectrometer (FLUOR-OMAX-4) with a xenon lamp. All the measurements were carried out at room temperature.

3. Results and discussion

Fig. 1 shows the X-ray diffraction patterns of $Ca_{2-1.5x}$ BO₃Cl:Eu_x³⁺ and Ca_{2-2x} BO₃Cl:Eu_x³⁺, M_x^+ (x=0.04, M=Li, Na, K). Obviously, all the samples exhibit similar diffraction peaks and match well with the single phase Ca_2BO_3Cl (JCPDS no. 29-0302), which belongs to monoclinic structure with space group $P2_1/c$. The minor difference is only the relative intensity of characteristic diffraction peaks due to the doped Eu³⁺ ions and the charge compensators, which does not affect phase identification.

In Ca_2BO_3Cl crystal lattice, the structure consists of Ca^{2+} , Cl^- and BO_3^{3-} ions arranged in distinct. Ca atoms occupy the sites with two types of seven-fold coordination ($CaCl_3O_4$ and $CaCl_2O_5$), each O atom is surrounded by three Ca atoms, one B atom in the form of a distorted tetrahedral and the Cl atoms are always situated at the corners of the trigonal base [9]. As we all know, both the ionic radii of Eu^{3+} (r=0.0947 nm) and M^+ (M^+ = Li^+ , Na^+ , K^+ ; the ionic radii are 0.092 nm, 0.118 nm and 0.138 nm, respectively.) are close to that of Ca^{2+} (r=0.112 nm). The three coordinated B^{3+} (r=0.027 nm) sites are

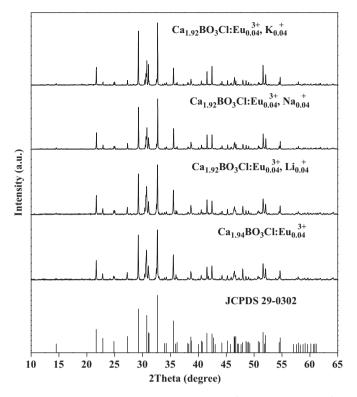


Fig. 1. The XRD patterns of $\text{Ca}_{2-1.5x}\text{BO}_3\text{Cl}:\text{Eu}_x^{3+}$ $\text{Ca}_{2-2x}\text{BO}_3\text{Cl}:\text{Eu}_x^{3+}$, M_x^+ (x=0.04, M=Li, Na, K) and standard card of $\text{Ca}_2\text{BO}_3\text{Cl}$ (JCPDS 29-0302).

too small for Eu³⁺ or M⁺ to occupy [19]. Based on the effective ionic radius of cations with different coordination numbers, it is assumed that Eu³⁺ and M⁺ ions are preferably to replace Ca²⁺ ions. Generally, when a metal cation substitutes for an ion with different valence in host lattice, charge compensator such as Li⁺, Na⁺ or K⁺ is employed to keep the charge balance. The charge compensation in above mentioned structure can most probably be described by two possible mechanisms: (a) two Ca²⁺ ions are replaced by one Eu³⁺ ions and one alkaline cation, $2Ca^{2+} \rightarrow Eu^{3+} + M^+$, where M⁺ is an alkaline cation like Li⁺, Na⁺ or K⁺; (b) the charge compensation is provided by a calcium vacancy, $3Ca^{2+} \rightarrow 2Eu^{3+} + V_{Ca}$. Therefore, Eu³⁺ and M⁺ co-doped in Ca₂BO₃Cl matrix may induce a lattice distortion.

The corresponding cell constants and unit cell volume of the samples are summarized in Table 1. The increases of cell constants and unit cell volume are possibly assigned to the fact that the ionic radii of $\mathrm{Na^+}$ ($r{=}0.118$ nm) and $\mathrm{K^+}$ ($r{=}0.138$ nm) are larger than that of $\mathrm{Ca^{2+}}$ ($r{=}0.112$ nm). On the contrary, the cell constants and unit cell volume of the samples have a little decline when the $\mathrm{Li^+}$ ions are added as the charge compensator, because the ionic radius of $\mathrm{Li^+}$ is smaller than that of $\mathrm{Ca^{2+}}$. In general, the doped $\mathrm{Eu^{3+}}$ and alkaline ions are randomly distributed in the cation ($\mathrm{Ca^{2+}}$) sites of the host. The cations with different radius in the host compound can result in some distortions of the sub-lattice structure around the luminescent center ions, hence different photoluminescence properties are produced [20].

Table 1
The calculated lattice parameters of the phosphors.

Phosphors	a (Å)	b (Å)	c (Å)	$V(\mathring{A}^3)$
Ca _{1.94} BO ₃ Cl:Eu ³⁺ _{0.04} Ca _{1.92} BO ₃ Cl:Eu ³⁺ _{0.04} , Li ⁺ _{0.04}	3.9502 3.9491	8.6814 8.6810	12.4076 12.4041	418.92 418.37
Ca _{1.92} BO ₃ Cl:Eu _{0.04} , Ll _{0.04} Ca _{1.92} BO ₃ Cl:Eu _{0.04} , Na _{0.04}	3.9518	8.6830	12.4126	419.05
$Ca_{1.92}BO_3Cl:Eu_{0.04}^{3+},\ K_{0.04}^{+}$	3.9519	8.6838	12.4139	419.42

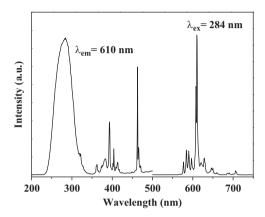


Fig. 2. Excitation (left) and emission (right) spectra of $Ca_{1.94}BO_3Cl:Eu_{0.04}^{3+}$ phosphor.

The excitation and emission spectra of Ca_{1.94}BO₃Cl: $Eu_{0.04}^{3+}$ phosphor are presented in Fig. 2. The excitation spectrum monitored at 610 nm exhibits one broad band centered at 284 nm corresponded to the O-Eu charge transfer band (CTB) transition and the other sharp lines around at 396 nm and 466 nm attributed to the f-f transitions of Eu³⁺ ion. Upon excitation of 284 nm, the emission spectrum consists of five clusters of typical linear emission peaks in the range of 570-710 nm, which result from ${}^5D_0 \rightarrow {}^7F_1$ (J=0, 1, 2, 3 and 4) transitions of Eu³⁺ ions, respectively. The main peak is the ${}^5D_0 \rightarrow {}^7F_2$ transition of Eu³⁺ at 610 nm, other emission transitions from the ${}^5\mathrm{D}_0$ excited levels to ${}^7\mathrm{F}_\mathrm{J}$ ($J{=}0, 1, 3$ and 4) ground states are relatively weak. It is known that the ${}^5D_0 \rightarrow {}^7F_2$ transition assigned to the forced electron dipole transition of Eu³⁺ is hypersensitive to its local environment, which is permitted only as Eu³⁺ occupied in a low symmetry site. While the cluster of peak near 590 nm corresponds to the allowed magnetic dipole ${}^5D_0 \rightarrow {}^7F_1$ transition of Eu³⁺, which is located in a high symmetry site [21,22]. In $Ca_{2-1.5x}$ $BO_3Cl:Eu_x^{3+}$ and $Ca_{2-2x}BO_3Cl:Eu_x^{3+}$, M_X^{3+} (x=0.04, M=Li, Na, K) host lattices, the ${}^5D_0 \rightarrow {}^7F_2$ electric dipole transition becomes the strongest among all these ${}^5D_0 \rightarrow {}^7F_1$ transitions due to the lack of inversion symmetry and the break of parity selection rules [21,23,24], which is advantageous for obtaining a pure red phosphor with good CIE chromaticity coordinates. The emission spectra of $Ca_{2-1.5x}BO_3Cl:Eu_x^{3+}$ phosphors with various Eu^{3+} concentrations under excitation of 284 nm are illustrated in Fig. 3. With the increase of Eu³⁺ concentration, the emission intensity has gradually enhanced and reached to

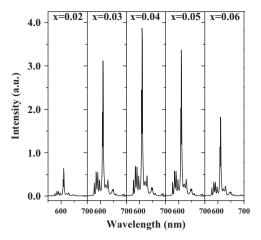


Fig. 3. Emission spectra of $Ca_{2-1.5x}BO_3Cl:Eu_x^{3+}$ phosphors with various Eu^{3+} concentrations ($\lambda_{ex} = 284$ nm).

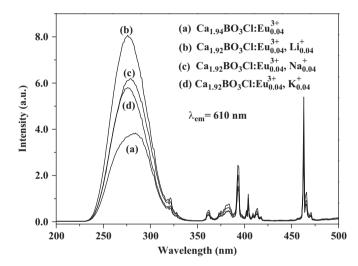


Fig. 4. Excitation spectra of $Ca_{2-1.5x}BO_3Cl:Eu_x^{3+}$ and $Ca_{2-2x}BO_3Cl:Eu_x^{3+}$, M_x^+ (x=0.04, M=Li, Na, K).

the maximum at x=0.04, and then the emission intensity gradually decreased. This is usually due to the fact that the internal concentration quenching occurs when the Eu³⁺ concentration is higher than x=0.04.

Fig. 4 illustrates the excitation spectra of $Ca_{2-1.5x}$ $BO_3Cl:Eu_x^{3+}$ and $Ca_{2-2x}BO_3Cl:Eu_x^{3+}$, M_x^+ (x=0.04, M=Li, Na, K) monitored at 610 nm. It is easy to notice that all the phosphors exhibit the similar peaks. However, there are two changes between Ca_{2-1,5x}BO₃Cl:Eu_x³⁺ and $\operatorname{Ca}_{2-2x}\operatorname{BO}_3\operatorname{Cl}:\operatorname{Eu}_x^{3+}$ (x=0.04, M=Li, Na, K) by carefully analyzing the excitation spectra of all samples. One evident change is the relative intensities of the as-prepared phosphors with different charge compensator. The relative intensities of the excitation spectra decrease with the increase of ionic radius of the alkali metal ions ($Li^+ < Na^+ < K^+$). The other minor change is the position of the CTB. It is noted that the peaks have a slightly blue shift of 2–4 nm when the charge compensators are introduced into the phosphors. Both of the phenomena are assumed to be caused by the different ion radii of M⁺ (one Eu³⁺ and one M⁺ ion replacing two Ca²⁺ ions) which may distort the sub-lattice structure around the

luminescent center ions. This deduction is in good agreement with the cell constants and unit cell volume of the sample shown in Table 1. Indeed, the difference of ionic radii would modify the sub-lattice structure around the luminescent center ions, which influences the spin-orbit couplings and crystal field of Eu³⁺ ions. In Ca₂BO₃Cl:Eu³⁺ phosphors, the doped Eu³⁺ and alkaline ions are randomly distributed in the cation (Ca²⁺) sites of the host. The CTB of O-Eu is attributed to the electron transitions from an oxygen 2p orbit to an empty Eu 4f orbit. They are closely related to the couplings between the luminescent center and crystal lattice, and the couplings mainly depend on the distance from the metal ion to the ligand [25]. When alkali metal ions are codoped in Ca₂BO₃Cl:Eu³⁺, the coordination conditions for Eu³⁺ will be influenced. As a result, the distances of O-Eu could have a slight change. Furthermore, the relative intensities of excitation and emission for Ca₂BO₃Cl:Eu³⁺ would vary with different alkali metal ions as charge compensator.

Fig. 5 shows the emission spectra of Y₂O₂S:Eu³⁺, $Ca_{2-1.5x}BO_3Cl:Eu_x^{3+}$ and $Ca_{2-2x}BO_3Cl:Eu_x^{3+}$, M_x^+ (x=0.04, M=Li, Na, K) under excitation wavelength of 284 nm, respectively. It is obvious that the four emission spectra of Eu³⁺-activated Ca₂BO₃Cl phosphors exhibit the similar peaks. When the M^+ (M=Li, Na, K) are employed as charge compensators in $Ca_{2-1.5x}BO_3Cl:Eu_x^{3+}$ phosphors, the emission intensities of ${}^5D_0 \rightarrow {}^7F_2$ transition have remarkably increased. The relative emission intensities of the phosphors with Li, Na or K introduced as the charge compensators are enhanced about 2.1, 1.6 and 1.5 times than those direct charge balanced, respectively. Among them, the emission intensity of as-prepared phosphor with Li⁺ as the charge compensator is higher than that of phosphors co-doped by Na⁺, Eu³⁺ and K⁺, Eu³⁺. The reason is that Li⁺ ions are easy to enter into Ca₂BO₃Cl: Eu³⁺ crystal lattice than the others, because the ionic radius of Li⁺ (0.092 nm) is smaller and the ionic

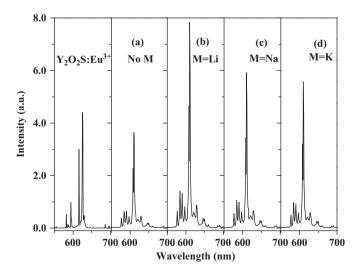


Fig. 5. Emission spectra of $Ca_{2-1.5x}BO_3Cl:Eu_x^{3+}$, $Ca_{2-2x}BO_3Cl:Eu_x^{3+}$, M_x^+ (x=0.04, M=Li, Na, K) and $Y_2O_2S:Eu^{3+}$ ($\lambda_{ex}=284$ nm).

radius of Na⁺ (r=0.118 nm) and K⁺ (r=0.138 nm) are larger than that of Ca²⁺ (r=0.112 nm). Currently, Y₂O₂S:Eu³⁺ is reported to be the main commercial red phosphor. For future comparison of photoluminescence spectra of Eu³⁺-activated Ca₂BO₃Cl with Y₂O₂S:Eu³⁺, we prepare Y₂O₂S:Eu³⁺ phosphor according to the results reported by K.R. Reddy et al. [18]. The emission spectrum of Y₂O₂S:Eu³⁺ under excitation wavelength of 284 nm is also shown in Fig. 5. The emission intensity of Y₂O₂S:Eu³⁺ is higher than that of Ca_{2-1.5x}BO₃Cl:Eu_x³⁺, but lower than that of Ca_{2-2x}BO₃Cl:Eu_x³⁺, M_x ⁺ (x=0.04, M=Li, Na, K). The emission intensities of Ca_{2-2x}BO₃Cl:Eu_x³⁺, M_x ⁺ (x=0.04, M=Li, Na, K) are about 1.8, 1.4 and 1.3 times than that of the commercial Y₂O₂S:Eu³⁺ phosphor, respectively.

In general, when a trivalent metallic ion, such as Eu³⁺, is incorporated into a host lattice and substituted by a divalent metallic ion, the charge balancing is necessarily required by co-dopeding alkali metal ions [14]. In the charge compensated phosphors $Ca_{2-1.5x}BO_3Cl:Eu_x^{3+}$ and $Ca_{2-2x}BO_3Cl:Eu_x^{3+}$, M_x^+ (x=0.04, M=Li, Na, K), one Eu³⁺ ion is expected to replace one Ca²⁺ ion, the other sites are occupied by calcium vacancy (V_{Ca}) or alkali metal ions (M=Li, Na, K). As above mentioned, the energy absorbed from the charge-transfer state is more efficient than that of calcium vacancy (V_{Ca}) due to the positive change of coordination conditions of Eu³⁺ after alkali metal ions are added. In consequence, the phosphors with efficient charge compensation exhibit higher red-light emission. Some previous works have been reported the studies related to charge compensation in Eu³⁺ doped tungstate and molybdate phosphors [15,16], our results are in good agreement with them.

The CIE 1931 chromaticity coordinates of $Y_2O_2S:Eu^{3+}$, $Ca_{2-1.5x}BO_3Cl:Eu_x^{3+}$ and $Ca_{2-2x}BO_3Cl:Eu_x^{3+}$, M_x^+ (x=0.04, M=Li, Na, K) phosphors which were calculated based on the corresponding emission spectra are represented in Fig. 6, respectively. The CIE chromaticity coordinates of $Y_2O_2S:Eu^{3+}$, $Ca_{2-1.5x}BO_3Cl:Eu_x^{3+}$ and $Ca_{2-2x}BO_3Cl:Eu_x^{3+}$, M_x^+ (x=0.04, M=Li, Na, K) are (0.641, 0.335), (0.599, 0.352), (0.615, 0.355), (0.611, 0.347) and (0.619, 0.349) corresponding to hues of reddish orange. It can be observed that the CIE coordinates of the samples $Ca_{2-2x}BO_3Cl:Eu_x^{3+}$, M_X^+ (x=0.04, M=Li, Na, K) are quite close to the NTSC standard values (x=0.67, y=0.33). The results indicate that $Ca_{2-2x}BO_3Cl:Eu_x^{3+}$, M_x^+ (x=0.04, M=Li, Na, K) phosphors have promising applications as the red luminescent materials in solid-state illumination.

4. Conclusions

In summary, Eu^{3+} -activated Ca_2BO_3Cl with different charge compensator were synthesized by the solid state reaction method, and their photoluminescence properties were investigated. Two approaches to achieve the charge compensation are tried: (a) $2Ca^{2+} \rightarrow Eu^{3+} + M^+$, where M^+ is a alkaline cation like Li^+ , Na^+ or K^+ ; (b)

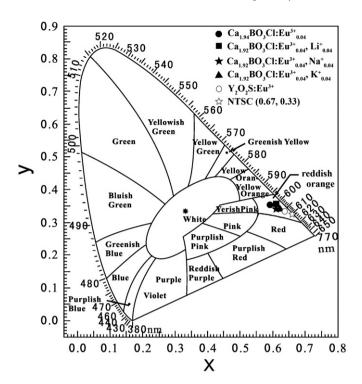


Fig. 6. The CIE 1931 chromaticity coordinates of $Ca_{2-1.5x}BO_3Cl:Eu_x^{3+}$. $Ca_{2-2x}BO_3Cl:Eu_x^{3+}$, M_y^+ (x=0.04, M=Li, Na, K) and $Y_2O_2S:Eu^{3+}$.

 $3\mathrm{Ca}^{2+} \rightarrow 2\mathrm{Eu}^{3+} + V_{\mathrm{Ca}}$. All the samples show the characteristic red emission of Eu^{3+} ions with good CIE chromaticity coordinates. The phosphors added alkaline cations as the charge compensator can significantly enhance luminescence intensity of Eu^{3+} (${}^5\mathrm{D}_0 \rightarrow {}^7\mathrm{F}_2$) in $\mathrm{Ca}_2\mathrm{BO}_3\mathrm{Cl}:\mathrm{Eu}^{3+}$. The phosphor with Li^+ as the charge compensator exhibits the strongest emission intensity, about 2.1 times higher than that of direct charge balanced. In the meantime, The phosphor added Li^+ ions shows better emission than that of the current commercial red phosphor $\mathrm{Y}_2\mathrm{O}_2\mathrm{S}:\mathrm{Eu}^{3+}$ and about 1.8 times as high as $\mathrm{Y}_2\mathrm{O}_2\mathrm{S}:\mathrm{Eu}^{3+}$. Therefore, $\mathrm{Ca}_2\mathrm{BO}_3\mathrm{Cl}:\mathrm{Eu}^{3+}$ phosphors with charge compensation may become the substitutes of current commercially red emitting phosphors.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant nos. 21171152), and by the Guangdong Province Enterprise-University-Academy Collaborative Project (no. 2010B090400437).

References

- C.R. Ronda, T. Justel, H. Nikol, Rare earth phosphors: fundamentals and applications, Journal of Alloys and Compounds (1998) 669–676275-277 (1998) 669–676.
- [2] L. Zeng, W.J. Tang, Synthesis and luminescence properties of Eu³⁺-activated NaLa(MoO₄)(WO₄) phosphor, Ceramics International 38 (2012) 837–840.
- [3] H.Y. Jiao, Y.H. Wang, Intense red phosphors for near-ultraviolet light-emitting diodes, Applied Physics B 98 (2010) 423–427.

- [4] Z.F. Mu, Y.H. Hu, L. Chen, X.J. Wang, Enhanced red emission in ZnB₂O₄:Eu3⁺ by charge compensation, Optical Materials 34 (2011) 89–94
- [5] P. Becker, Borate materials in nonlinear optics, Advanced Materials 10 (1998) 979–992.
- [6] X.Y. Sun, J.C. Zhang, X.G. Liu, L.W. Lin, Enhanced luminescence of novel Ca₃B₂O₆:Dy³⁺ phosphors by Li⁺-codoping for LED applications, Ceramics International 38 (2012) 1065–1070.
- [7] P. Dekker, J.M. Dawes, Characterisation of nonlinear conversion and crystal quality in Nd- and Yb-doped YAB, Optics Express 12 (2004) 5922–5930.
- [8] S. Ye, F. Xiao, Y.X. Pan, Y.Y Ma, Q.Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties, Materials Science and Engineering R 71 (2010) 1–34.
- [9] Z. Zak, F. Hanic, The crystal structure of calcium borate chloride CaCl₂. Ca3(BO3)2, Acta Crystallographica Section B 32 (1976) 1784–1787.
- [10] Z.P. Yang, S.L. Wang, G.W. Yang, J. Tian, P.L. Li, X. Li, Luminescent properties of Ca₂BO₃Cl:Eu²⁺ yellow-emitting phosphor for white light-emitting diodes, Materials Letters 61 (2007) 5258–5260.
- [11] C.F. Guo, L. Luan, L. Shi, H.J. Seo, Photoluminescence properties and crystallographic sites of Ce³⁺ in Ca₂BO₃Cl, Electrochem, Solid-State Letters 13 (4) (2010) J28–J31.
- [12] F. Xiao, Y.N. Xue, Q.Y. Zhang, Ca₂BO₃Cl:Ce³⁺, Eu²⁺: a potential tunable yellow–white–blue-emitting phosphors for white light-emitting diodes, Physica B 404 (2009) 3743–3747.
- [13] C.F. Guo, L. Luan, F.G. Shi, X. Ding, White-emitting phosphor Ca₂BO₃Cl:Ce³⁺, Eu²⁺ for UV light-emitting diodes, Journal of the Electrochemical Society 156 (6) (2009) J125–J128.
- [14] J.G. Wang, X.P. Jing, C.H. Yan, J.H. Lin, Ca_{1-2x}Eu_xLi_xMoO₄: a novel red phosphor for solid-state lighting based on a GaN LED, Journal of the Electrochemical Society 152 (3) (2005) G186–G188
- [15] J. Liu, H.Z. Lian, C.S. Shi, Improved optical photoluminescence by charge compensation in the phosphor system CaMoO₄:Eu³⁺, Optical Materials 29 (2007) 1591–1594.
- [16] S.K. Shi, J. Gao, J. Zhou, Effects of charge compensation on the luminescence behavior of Eu³⁺ activated CaWO₄ phosphor, Optical Materials 30 (2008) 1616–1620.
- [17] S. Choi, Y.M. Moon, H.K. Jung, Enhanced luminescence by charge compensation in red-emitting Eu³⁺-activated Ca₃Sr₃(VO₄)₄, Materials Research Bulletin 45 (2010) 118–120.
- [18] K.R. Reddy, K. Annapurna, S. Buddhudux, Fluorescence spectra of Eu³⁺:Ln₂O₂S (Ln=Y, La, Gd) powder phosphors, Materials Research Bulletin 31 (1996) 1355–1359.
- [19] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A 32 (1976) 751–767.
- [20] J.P.M. Van Vliet, G. Blasse, L.H. Brixner, Luminescence properties of alkali europium double tungstates and molybdates AEuM₂O₈, Journal of Solid State Chemistry 76 (1988) 160–166.
- [21] S.Z. Lu, J.S. Zhang, Study on UV excitation properties of Eu³⁺-doped rare-earth phosphates, Journal of Luminescense 122 (2007) 500–502.
- [22] A. Xie, X.M. Yuan, F.X. Wang, Y. Shi, Z.F. Mu, Enhanced red emission in ZnMoO₄:Eu³⁺ by charge compensation, Journal of Physics D: Applied Physics 43 (2010) 055101.
- [23] L.H. Tian, B.Y. Yu, C.H. Pyun, H.L. Park, Sun-il Mho, New red phosphors BaZr(BO₃)₂ and SrAl₂B₂O₇ doped with Eu³⁺ for PDP applications, Solid State Communication 129 (2004) 43–46.
- [24] Y.Q. Yu, S.H. Zhou, S.Y. Zhang, Luminescence of the compounds $Y_{0.5-x}Li_{1.5}VO_4:(Dy^{3+},Eu^{3+})_x$, Journal of Alloys and Compounds 351 (2003) 84–86.
- [25] C.A. Kodaira, H.F. Brito, O.L. Malta, O.A. Serra, Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method, Journal of Luminescence 101 (2003) 11–21.