

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 38S (2012) S177-S181

Microwave dielectric properties of BiNbO₄ ceramics with CuO–V₂O₅ addition

Hong Ryul Lee^a, Ki Hyun Yoon^{a,d,*}, Eung Soo Kim^b, Ji Won Choi^c, Richard Boucher^d

^a School of Advanced materials Engineering, Yonsei University, Seoul 120-749, Republic of Korea
^b Department of Materials Engineering, Kyonggi University, Suwon 442-769, Republic of Korea
^c Thin Film Materials Research Ctr., Korea Institute of Science and Technology, Seoul, 139-650, Republic of Korea
^d Institute of Materials Science, Technical University of Dresden, 01062 Dresden, Germany

Available online 4 May 2011

Abstract

BiNbO₄ ceramics were developed by using $CuO-V_2O_5$ as a liquid phase sintering agent. The resultant dielectric properties were analyzed in terms of the densification and the amount of $CuO-V_2O_5$ sintering agent. The addition of 0.8 wt.% $CuO-V_2O_5$ as its sintering agent was observed to perform most satisfactory. At 850 °C, uniform and enhanced microstructure was observed for the BiNbO₄ specimen with 0.8 wt.% $CuO-V_2O_5$ addition. Furthermore, the effect of $CuO-V_2O_5$ addition on the microwave dielectric properties of BiNbO₄ was also investigated. As the sintering temperature increased to 900 °C, the dielectric constant increased but nearly constant and the quality factor (QF) showed a maximum at 850 °C and then decreased for all compositions of the 900 °C sintered specimens. With an increase in $CuO-V_2O_5$ content, the temperature coefficient of frequency (TCF) increased in accordance with the dielectric mixing rule and microstructural behavior.

Keywords: A. Sintering; C. Dielectric properties; Chemical synthesis; Microstructure

1. Introduction

With the rapid progress in commercial wireless communication, the miniaturization of mobile communication terminals and components has become increasingly important. The application of multilayer microwave devices will contribute to the realization of this aim [1]. So far effort has been concentrated on the fabrication of a dielectric material within the multilayered integrated circuit. During the fabrication of multilayer microwave devices, low-firing microwave dielectric materials with high *QF* values are necessary for its co-firing process with low-loss, low-melting point conductors such as silver and copper. The most popular method of achieving this goal involves, both using low temperature sintering agents and mixing compositions with different dielectric properties [2,3]. By combining two or more

Numerous dielectric compounds including Nb₂O₅ and their solid solutions have been investigated in the microwave frequency range [4-6]. The niobate based materials are candidates for microwave dielectrics due to their low cost and high quality factor [6]. Among a large number of niobate based compositions, BiNbO₄ was selected for this study. BiNbO₄ exhibits a dielectric constant of \sim 40, a QF \sim 10,000 GHz, and a TCF \sim +15 ppm/ $^{\circ}$ C [7]. BiNbO₄ ceramics can be sintered at low temperature and still have good microwave dielectric properties. Their sintering temperature can be controlled by a small addition of CuO-V2O5 as a sintering agent [8]. However, a systematic investigation of compositional details, the dielectric properties of BiNbO₄ ceramics and sintering agents are necessary for designing dielectric compositions. Moreover, a modification of the TCF is necessary because of the large negative value of the coefficient. Because of the high QF and negative TCF value of BiNbO₄, an appropriate mixture of BiNbO4 and CuO-V2O5 could be expected to provide both a high QF value and temperature stable resonant frequency. In this study, the influence of CuO-

Tel.: +82 31 812 0778; fax: +82 31 812 0778.

E-mail address: khyoon@yonsei.ac.kr (K.H. Yoon).

components, a near-zero TCF and high QF values can be obtained.

^{*} Corresponding author at: School of Advanced materials Engineering, Yonsei University, Seoul 120-749, Republic of Korea.

 V_2O_5 as a sintering agent on the microwave dielectric properties of BiNbO₄ was investigated as a function of sintering temperature and composition.

2. Experimental procedures

Mixed oxide powders of BiNbO₄ with CuO-V₂O₅ as a sintering agent were prepared from Bi₂O₃, Nb₂O₅, CuO and V₂O₅ with purity higher than 99.5% by a conventional mixedoxide method. First, BiNbO₄ was synthesized through the calcination of Bi₂O₃-Nb₂O₅ at 750 °C for 3 h. CuO and V₂O₅ were also calcined in order to synthesize CuO-V₂O₅ as the sintering agent at 500 °C for 5 h. The final compositions were batched and then wet mixed with ZrO₂ balls for 24 h in ethanol. After drying, the reagent was calcined at 800 °C for 3 h. The calcined powders were milled again with ZrO₂ balls for 24 h in ethanol and then sieved using an 80-mesh screen. Prepared powders were dried in an oven (100 °C) for 24 h and pressed into disks, where a pressing pressure of 1450 kg/cm² was used for all specimens in the cold isostatic pressing process. Specimens were then sintered at 830-920 °C for 3 h at a heating rate of 200 °C/ min. Crystalline phases of the sintered specimens were identified by X-ray powder diffraction (Rigaku D/Max-3 C, Japan) using Cu K α radiation ($\lambda = 1.5418 \text{ Å}$) with 40 kV/30 mA, a sampling width of 0.02° , and scan speed of 4° /min in the 2θ range of 10– 80°. Microstructures of the specimens were studied by scanning electron microscopy (SEM, Hitachi S-4200, Japan). Microwave dielectric properties of the specimens were measured by the post resonant method using the TE₀₁₁ mode [9].

3. Results and discussion

Fig. 1 shows the DTA curve of BiNbO₄ powders for a heating rate of 5 $^{\circ}$ C/min.

Fig. 2 shows the XRD patterns of BiNbO₄ calcined at 850 $^{\circ}$ C and 1150 $^{\circ}$ C for 3 h, showing orthorhombic and triclinic crystal

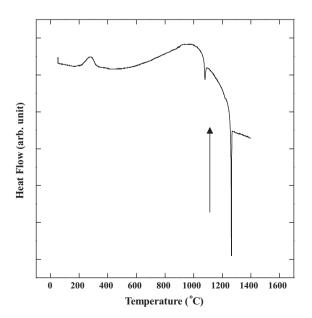
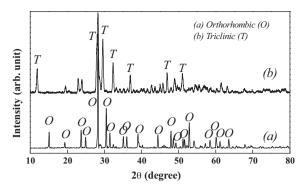



Fig. 1. DTA curves of BiNbO₄ powders. (heating rate: 5 °C/min).

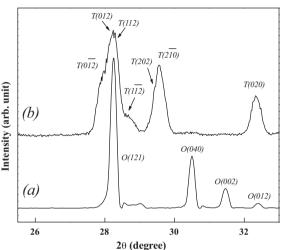
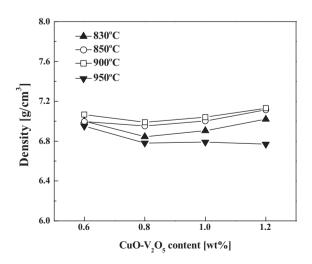
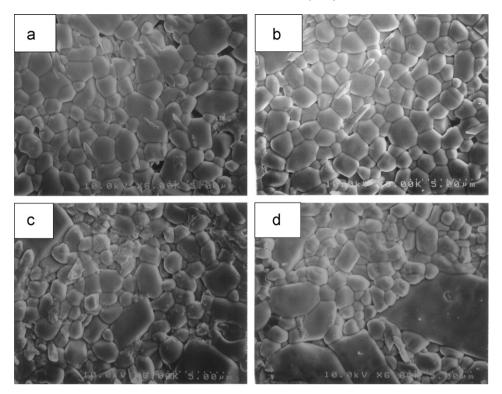
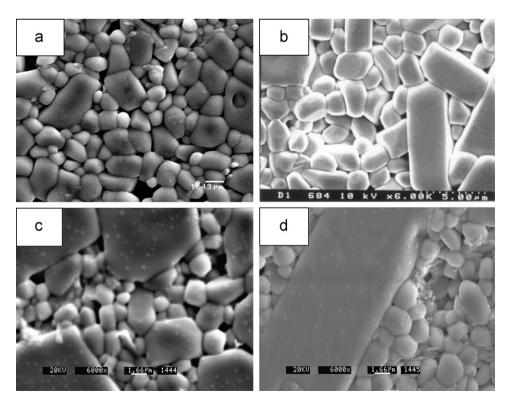


Fig. 2. XRD patterns of BiNbO $_4$ specimens calcined (a) at 850 °C for 3 h and (b) at 1150 °C for 3 h, showing crystal structures of orthorhombic and triclinic, respectively.

structures, respectively. In these figures, the phase change from the low temperature orthorhombic phase to the high temperature triclinic phase can be observed as its temperature increases and the phase transition temperature seems to be about 1079 °C. In this work, therefore, the effect of $\text{CuO-V}_2\text{O}_5$ on the sintering behavior was studied for the composition of BiNbO_4 in order to lower the sintering temperature to ${\sim}850\,^{\circ}\text{C},$


Fig. 3. Bulk density of BiNbO₄ specimens as a function of CuO–V $_2$ O $_5$ content sintered at 830–900 $^{\circ}$ C for 3 h.

 $Fig.~4.~SEM~micrographs~of~BiNbO_4~specimens~as~a~function~of~CuO-V_2O_5~content;\\ (a)~0.6~wt.\%,\\ (b)~0.8~wt.\%,\\ (c)~1.0~wt.\%,\\ (d)~1.2~wt.\%~sintered~at~850~^{\circ}C~for~3~h.\\ (d)~0.6~wt.\%,\\ (e)~0.8~wt.\%,\\ (e)~0.8~wt.$

for a possible co-firing process with internal conductors below the melting temperature of the metals such as Ag and Cu. The bulk densities of the BiNbO $_4$ specimens as a function of CuO–V $_2$ O $_5$ content and sintering temperature are given in Fig. 3. Except for the 950 °C sintered specimens, the densities of the

specimens remain initially almost unchanged and then increase a little with increasing CuO– V_2O_5 content due to the low melting point of CuO– V_2O_5 (m.p. = 650 °C) [10]. Fig. 3 also shows the densities as a function of sintering temperature. With an increase of sintering temperature, the low temperature

 $Fig. 5. \ SEM \ micrographs \ of \ BiNbO_4 \ specimens \ as \ a \ function \ of \ CuO-V_2O_5 \ content; \\ (a) \ 0.6 \ wt.\%, \\ (b) \ 0.8 \ wt.\%, \\ (c) \ 1.0 \ wt.\% \ and \\ (d) \ 1.2 \ wt.\% \ sintered \ at \ 900 \ ^{\circ}C \ for \ 3 \ h.$

sintering behavior appears effectively with the addition of $\text{CuO-V}_2\text{O}_5$ and reaches a maximum value at 900 °C. This figure shows that the densification with $\text{CuO-V}_2\text{O}_5$ at 900 °C is higher than that at 950 °C, which suggests that a temperature higher than 900 °C is unnecessary. This result reveals that a significant reduction in the sintering temperature of BiNbO_4 is possible with $\text{CuO-V}_2\text{O}_5$ addition as a sintering agent while maintaining high density.

Figs. 4 and 5 show the SEM micrographs of BiNbO₄ ceramics with different amounts of CuO-V2O5 addition, and sintered for 3 h at 850 °C and 900 °C, respectively. When sintered at 850 °C, a small and regular grain size (1–3 μm) was easily observed for the 0.6 and 0.8 wt.% CuO-V₂O₅added specimens. However, in Fig. 4(c) and (d), abnormal grain growth could be detected, and this behavior seems to be the result of the liquid phase sintering due to the melting of CuO-V₂O₅. In Fig. 5, the abnormal grain growth due to liquid phase sintering is observed even in the specimen of 0.8 wt.% CuO-V₂O₅. Moreover it occurs more strongly than in Fig. 4 because of the higher sintering temperature. It seems that Cu and V form liquid phases during the sintering stage. For liquid phase sintering, the liquid phase is resident or disappears in the final stages. This suggests that the secondary phase could appear at the grain boundary or inside the grain, and that the phases would be rich in Cu and V. However, the secondary phases were not identified by XRD since detection of a minor phase by XRD was extremely difficult and its composition was very complex [11], and, therefore, further research is required. This fact is in accord with a previous report which suggested the formation of a residual phase containing Cu as the liquid phase of CuOdoped BiNbO₄ ceramics [12].

Fig. 6 shows the microwave dielectric properties of BiNbO₄ ceramics with CuO-V₂O₅ addition sintered at 850 °C and 900 °C for 3 h. The dielectric constants are nearly constant, and the QF values decrease with an increasing addition of CuO-V2O5. After reaching a maximum at the composition of 0.8 wt.% CuO-V₂O₅, the QF decreases when sintered at 850 °C. The QF values are generally known to be affected by the morphology of the specimens such as grain size and uniformity. Therefore, the decrease in its QF is thought to be due to the non-uniform microstructure caused by the abnormal grain growth resulting from liquid phase densification seen in Figs. 4 and 5. The TCF increased gradually with increasing CuO- V_2O_5 content. The *TCF* is known to be related to the composition and the second phase of the ceramic samples. No significant difference was observed in the TCF value between the specimens prepared at different sintering temperatures. However, the TCF value become more positive with increasing CuO-V₂O₅ content due to the effect of V₂O₅ and the subsequent formation of its liquid phase in sintering stage. This is in agreement with the reports of the previous studies on BiNbO₄ and MgNb₂O₆ ceramics [13,14]. Therefore, it is believed from this result that the TCF value of BiNbO₄ ceramics can be adjusted to near-zero by carefully controlling the content of CuO-V₂O₅.

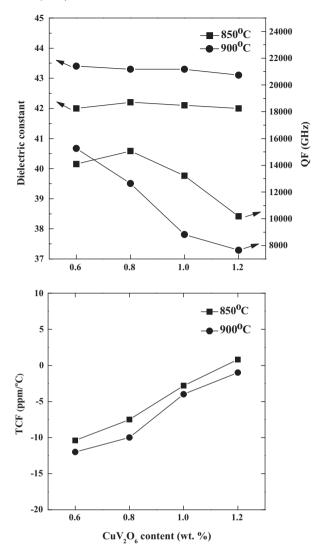


Fig. 6. Dielectric constant, quality factor (QF) and temperature coefficient of resonant frequency (TCF) of $BiNbO_4$ specimens sintered at 850 and 900 $^{\circ}C$ for 3 h as a function of $CuO-V_2O_5$ content.

4. Conclusion

The addition of $\text{CuO-V}_2\text{O}_5$ as a sintering agent to BiNbO_4 lowered the sintering temperature to $850\text{--}900\,^{\circ}\text{C}$. The dielectric constants remain almost constant and the QF values of the specimens with $\text{CuO-V}_2\text{O}_5$ changed with increasing $\text{CuO-V}_2\text{O}_5$ content. This can be attributed to the occurrence of liquid phase densification. The TCF increased gradually with increasing $\text{CuO-V}_2\text{O}_5$ content. Therefore, it is suggested that the TCF of BiNbO_4 -based ceramics can be adjusted to nearzero by carefully controlling the content of $\text{CuO-V}_2\text{O}_5$. Typically, BiNbO_4 with $0.8\,\text{wt.}\%$ $\text{CuO-V}_2\text{O}_5$ sintered at $850\,^{\circ}\text{C}$, showed the microwave dielectric properties of $\varepsilon = 42$, $QF = 15,500\,\text{GHz}$ and $TCF = -4\,\text{ppm/}^{\circ}\text{C}$.

References

[1] T. Ishizaki, M. Fujita, T. Uwano, H. Kagata, T. Uwano, H. Miyake, A very small dielectric planar filter for portable telephones, IEEE Transaction on Microwave Theory and Techniques 42 (11) (1994) 2017–2022.

- [2] I. Burn, Low-firing dielectric composition, United States Patent #4845062, 1989.
- [3] J.W. Choi, C.Y. Kang, S.H. Shim, S.J. Yoon, H.J. Kim, K.H. Yoon, Dielectric and patch antenna characteristics of new high-Q (1-x)(Al_{1/2}Ta_{1/2})O_{2-x}(Mg_{1/3}Ta_{2/3})O₂ ($0 \le x \le 1.0$), Materials Chemistry and Physics 79 (2003) 247–251.
- [4] I.M. Reaney, E.L. Colla, N. Setter, Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor, Japanese Journal of Applied Physics Part 1 33 (1994) 3984–3990.
- [5] E.L. Colla, I.M. Reaney, N. Setter, Effect of structural changes in complex perovskites on the temperature coefficient of relative permittivity, Journal of Applied Physics 74 (1993) 3414–3425.
- [6] H. Hughes, D.M. Iddles, I.M. Reaney, Niobate based dielectrics suitable for third generation mobile phone base stations, Applied Physics Letters 79 (2001) 2952–2954.
- [7] H.R. Lee, K.H. Yoon, E.S. Kim, Y.S. Cho, S.O. Yoon, T.H. Kim, Microwave dielectric properties of BiNbO₄–NiNb₂O₃ ceramics with CuO–V₂O₅ sintering agent, Journal of the Ceramic Society of Japan 112 (5) (2004) S1579–S1582.

- [8] H. Kagata, T. Inoue, J. Kato, I. Kameyama, Low-fire bismuth-based dielectric ceramics for microwave use, Japanese Journal of Applied Physics 31 (1992) 3152–3155.
- [9] B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range, IEEE Transaction on Microwave Theory and Techniques 8 (1960) 402–410.
- [10] P. Fleury, Sur le CuO-V₂O₅ system, Comptes Rendus de l'Académie des Sciences, Paris, Series C 263 (1966) 1375–1377.
- [11] C.-L. Huang, R.-J. Lin, J.-J. Wang, Effect of B₂O₃ additives on sintering and microwave dielectric behaviors of CuO-doped ZnNb₂O₆ ceramics, Japanese Journal of Applied Physics 41 (2002) 758–762.
- [12] C.-L. Huang, M.-H. Weng, C.-C. Yu, Low firable BiNbO₄ based microwave dielectric ceramics, Ceramics International 27 (2001) 343–350.
- [13] W.-C. Tzou, C.-F. Yang, Y.-C. Chen, P.-S. Cheng, Improvements in the sintering and microwave properties of BiNbO₄ microwave ceramics by V_2O_5 addition, Journal of the European Ceramic Society 20 (2000) 991–996.
- [14] C.-S. Hsu, C.-L. Huang, J.-F. Tseng, C.-Y. Huang, Improved high-Q microwave dielectric resonator using CuO-doped MgNb₂O₆ ceramics, Materials Research Bulletin 38 (2003) 1091–1099.