

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 38S (2012) S191-S195

MgTiO₃/polystyrene composites with low dielectric loss

Dong Hyeok Im, Chang Jun Jeon, Eung Soo Kim*

Department of Materials Engineering, Kyonggi University, Suwon 443-760, Republic of Korea Available online 4 May 2011

Abstract

Composites of MgTiO₃ filler dispersed inside polystyrene (PS) matrix were prepared by extrusion method and hot-molding technique. Effects of particle size of MgTiO₃ on the dielectric properties of MgTiO₃/PS composites were investigated at microwave frequencies. With increasing of MgTiO₃ content, the apparent density of the composites was increased, while the relative density was decreased due to the increase of porosity, which induced the increase of dielectric loss (tan δ) of the composites. The tan δ of the composites was also affected by the mixture ratio of MgTiO₃ with different particle sizes. The dielectric constant (K) and temperature coefficient of resonant frequency (TCF) of the composites with MgTiO₃ content and particle size were also discussed.

© 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Hot pressing; B. Composites; C. Dielectric properties; MgTiO₃/polystyrene

1. Introduction

Recently, there has been an upsurge in demand for ceramics/polymer composites with high-performance which have low dielectric constant (K) and dielectric loss ($\tan \delta$) for fast signal speed and low delay time of propagation. because they are available to the various applications such as packages and substrate materials.

It has been reported that polystyrene (PS) has low-processing temperature (160 °C), good flexibility and excellent microwave dielectric properties (K = 2.14, $\tan \delta = 4 \times 10^{-4}$) [1], comparing with other polymer such as polyvinylidene fluoride, polymethyl methacrylate, polyacetylene, and polyanilene. In our preliminary experiment, MgTiO₃ ceramics sintered at 1350 °C for 3 h showed good microwave dielectric properties (K = 18.2, $\tan \delta = 0.3 \times 10^{-4}$) [2]. Therefore, PS filled with MgTiO₃ ceramics would be an effective approach to improve the dielectric properties of ceramics/polymer composites for packages and substrate applications.

Generally, the dielectric properties of ceramics/polymer composites could be controlled effectively by the amount and type of ceramics. Also, the degree of dispersion and the connectivity of the constituents in the polymeric matrix were strongly affected by the particle size of ceramics, which induced the changes of the dielectric properties. Dispersion behaviors of ceramics with different particle sizes should be studied to improve the dispersion and connectivity of ceramics in the polymeric matrix.

In this study, the dielectric properties of MgTiO₃/PS composites were investigated based on volume fraction, particle size and mixture ratio of MgTiO₃ with different particle sizes. Also, the temperature coefficient of resonant frequency (*TCF*) of composites was discussed for thermal stability of the composites at microwave frequencies.

2. Experimental procedures

MgTiO₃ ceramics powder was prepared by a conventional solid-state reaction from the powders of MgO and TiO₂ (rutile) with purities above 99%. These powders were milled using ZrO₂ balls for 24 h in ethyl alcohol. To obtain a single phase of MgTiO₃, the mixtures were dried and calcined at 1100 °C for 5 h, and then sintered at 1350 °C for 3 h in air. The sintered powders were grinded and sieved into the powders with the particle size of about \leq 45 µm and 250–300 µm, respectively. Polystyrene (PS) with molecular weight of 280,000 (gel permeation chromatography (GPC)) was used as the polymer matrix. PS was weighed and put into the chamber of the Torque Rheometer (Rheomix 600p, ThermoHaake, Germany) at 200 °C, followed by slow addition of the MgTiO₃ ceramics

^{*} Corresponding author. Tel.: +82 31 249 9764; fax: +82 31 244 6300. E-mail address: eskim@kyonggi.ac.kr (E.S. Kim).

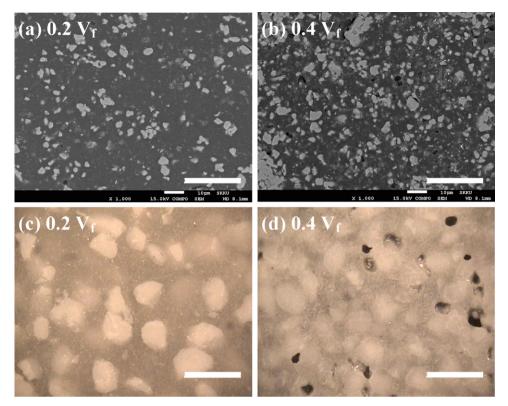


Fig. 1. SEM micrographs ((a) and (b): \leq 45 μ m, bar = 30 μ m) and optical images ((c) and (d): 250–300 μ m, bar = 700 μ m) of MgTiO₃/polystyrene composites with volume fraction (V_f) of MgTiO₃.

powder. After mixing at a speed of 50 rpm for 30 min–1 h, MgTiO $_3$ /PS composites were taken from the chamber and hotpressed at 200 °C from 13 to 19 MPa for 1 h to prepare the specimens for the evaluation of physical and dielectric properties.

The apparent density of the composites was measured by Archimedes method. The relative density was obtained from the theoretical values by mixing rule. Powder X-ray diffraction analysis (XRD, D/Max-3C, RIGAKU, Japan) was used to identify the crystalline phases of the specimens. Microstructure of the specimens was observed using a scanning electron microscope (SEM, JSM-7500F, JEOL, Japan) and metallogical microscope (DCS-105, Sometech, Korea). As frequency ranges from 1 GHz to 7.3 GHz, the dielectric properties were measured by open-ended coaxial resonator probes method [3]. At 13 GHz, the dielectric properties were measured by the Hakki and Coleman method [4]. The temperature coefficient of resonant frequency (*TCF*) was measured by the cavity method [5] in the temperature range from 25 °C to 80 °C at 8 GHz.

3. Results and discussion

SEM micrographs and optical images of MgTiO₃/polystyrene (PS) composites with volume fraction (V_f) and particle size of MgTiO₃ are shown in Fig. 1. With increasing of MgTiO₃ content, the distance between MgTiO₃ particles was decreased and connectivity was increased. The interface areas between PS and MgTiO₃ with particle size of \leq 45 μ m (Fig. 1(a) and (b)) were larger than those with particle size of 250–300 μ m

(Fig. 1(c) and (d)). For the composites with low V_f of MgTiO₃, MgTiO₃ particles were completely surrounded by the melted PS which induced the low porosity. However, the pores were observed for the composites with $0.4V_f$ of MgTiO₃ (Fig. 1(b) and (d)). These results could explain that the composite materials became less compact and easily brought out pores with decreasing of PS content.

For the composites with $0.4V_f$ of MgTiO₃, the abbreviations for mixture ratio of small particle size (S, \leq 45 μ m) and large particle size (L, 250–300 μ m) of MgTiO₃ in this study are summarized in Table 1.

Fig. 2 shows the apparent and relative densities of MgTiO₃/PS composites with V_f of MgTiO₃ (\leq 45 μ m, 250–300 μ m) and mixture ratio (\leq 45 μ m (S): 250–300 μ m (L)) at 0.4 V_f of MgTiO₃, respectively. With increasing of MgTiO₃ content, the apparent density of the composites was increased due to the higher density of MgTiO₃ (3.895 g/cm³) than that of PS (1.05 g/

Table 1 Mixture ratio of small particle size (S, \leq 45 μ m) and large particle size (L, 250–300 μ m) for the composites with 0.4 volume fraction (V_f) of MgTiO₃.

Abbreviation	Volume fraction (V_f) of MgTiO ₃	
	S (≤45 μm)	L (250–300 μm)
S0:L4	0	0.4
S1:L3	0.1	0.3
S2:L2	0.2	0.2
S3:L1	0.3	0.1
S4:L0	0.4	0

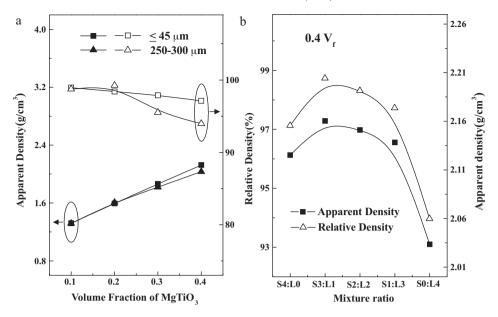


Fig. 2. Apparent and relative densities of MgTiO₃/polystyrene composites with (a) volume fraction (V_f) of MgTiO₃ (\leq 45 μ m, 250–300 μ m) and (b) mixture ratio (\leq 45 μ m (S): 250–300 μ m (L)) at 0.4 V_f of MgTiO₃.

cm³), while the relative density was decreased above $0.2V_f$ due to the increase of porosity by weak adhesion of interface between MgTiO₃ and PS. For the composites with MgTiO₃ above $0.2V_f$, the relative density of the composites with large size of MgTiO₃ (250–300 μ m) was smaller than that of the composites with small size of MgTiO₃ (\leq 45 μ m) due to the large porosity, as confirmed in Fig. 1(b) and (d). For the composites with various mixture ratio at $0.4V_f$ of MgTiO₃, the apparent and relative densities of the composites were increased up to S3:L1 and then decreased at S4:L0. These results could be explained that the pores between large particle

size of MgTiO₃ were filled with small particle size of MgTiO₃. Also, the apparent and relative densities of the composites with homogeneous particle size of MgTiO₃ (S4:L0, S0:L4) were smaller than those of the composites with heterogeneous particle size of MgTiO₃ (S3:L1, S2:L2, and S1:L3).

Fig. 3 shows the XRD patterns of MgTiO₃/PS composites with volume fraction (V_f) of MgTiO₃ (250–300 μ m) and mixture ratio at $0.4V_f$ of MgTiO₃, respectively. The trigonal ilmenite structure (R-3H) of MgTiO₃ and amorphous halo of PS were confirmed through the entire range of compositions. Based on the XRD patterns of the specimens, the reaction

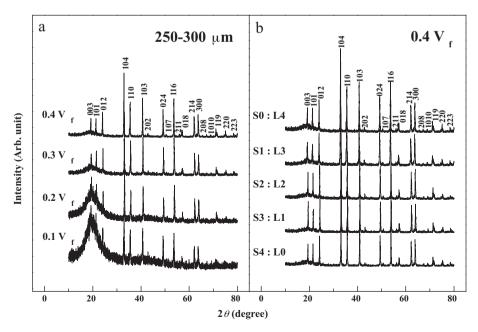


Fig. 3. X-ray diffraction patterns of MgTiO₃/polystyrene composites with (a) volume fraction (V_f) of MgTiO₃ (250–300 μ m) and (b) mixture ratio (\leq 45 μ m (S): 250–300 μ m (L)) at 0.4 V_f of MgTiO₃.

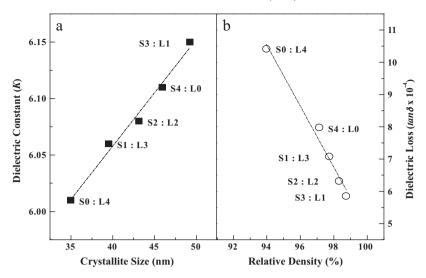


Fig. 4. Dependence of (a) dielectric constant (K) and/or (b) dielectric loss ($\tan \delta$) on the crystallite size and/or relative density with mixture ratio (\leq 45 μ m (S): 250–300 μ m (L)) at $0.4V_f$ of MgTiO₃ (13 GHz), respectively.

compounds between MgTiO₃ and PS were not detected, which in turn, the chemical reactions between the MgTiO₃ and PS were not observed. With increasing of MgTiO₃ (250–300 μ m) content, the amorphous halo of PS was decreased, while the intensity of crystalline MgTiO₃ phase was increased (Fig. 3(a)). For the composites with various mixture ratio at 0.4 V_f of MgTiO₃, the intensity of crystalline MgTiO₃ phase and amorphous halo of PS were also changed slightly with different mixture ratios (Fig. 3(b)). These results are due to the different crystallinity of the composites. Therefore, the crystallite size of the composites was calculated from the full width at half maximum (FWHM) intensity of the XRD peak $(2\theta = 32.9^{\circ})$ using Scherrer's equation [6] for the evaluation of the crystallinity of the composite.

$$D = \frac{0.9\lambda}{B\cos\theta} \tag{1}$$

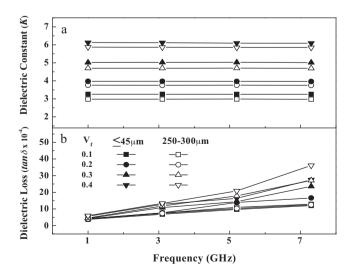


Fig. 5. Frequency dependence of (a) dielectric constant (K) and (b) dielectric loss ($\tan \delta$) of MgTiO₃/polystyrene composites with volume fraction (V_f) of MgTiO₃ (\leq 45 μ m, 250–300 μ m).

where λ is the wavelength of the X-ray radiation ($\lambda = 0.154$ nm), B is the FWHM of the peak (radians) corrected for instrumental broadening, θ is the Bragg angle, and D is the crystallite size (nm).

Fig. 4 shows the dependence of dielectric constant (K) and/ or dielectric loss ($\tan \delta$) on the crystallite size and/or relative density with mixture ratio at $0.4V_f$ of MgTiO₃ (13 GHz), respectively. With increasing of MgTiO₃ with small particle (S), the K of the composites was increased except for mixture ratio of S3:L1 which was dependent on the crystallite size. However, the $\tan \delta$ of the composites was decreased with increasing of MgTiO₃ with small particle (S) except for mixture ratio of S4:L0. These results could be attributed to the decrease of relative density by the formation of pore, as confirmed in Fig. 1.

Fig. 5 shows the frequency dependence of K and $\tan \delta$ of MgTiO₃/PS composites with V_f of MgTiO₃ (\leq 45 μ m, 250– 300 μ m). For all of the V_f and particle size, the K of the composites showed a constant with frequency from 1 GHz to 7.3 GHz. However, the K of the composites was increased with MgTiO₃ content at same frequency. These results are due to the increase of the dipole-dipole interaction and connectivity among MgTiO₃ particles with MgTiO₃ content. Also, the K of the composites with small particle size of MgTiO₃ (\leq 45 µm) was larger than that of the composites with large particle size of MgTiO₃ (250–300 μm) due to the interfacial polarization [7]. The tan δ of the composites was increased with frequency due to the dipolar relaxation process associated with the matrices. With increasing of MgTiO₃ content, the tan δ of the composites was increased at same frequency. The tan δ of the composites with small particle size of MgTiO₃ (\leq 45 µm) was smaller than that of the composites with large particle size of MgTiO₃ (250– 300 µm). These results could be attributed to the interfacial polarization and density [7].

Fig. 6 shows the temperature coefficient of resonant frequency (TCF) of MgTiO₃/PS composites with V_f and mixture ratio of MgTiO₃ at 8 GHz. The TCF of MgTiO₃/PS composites was decreased with MgTiO₃ content due to the

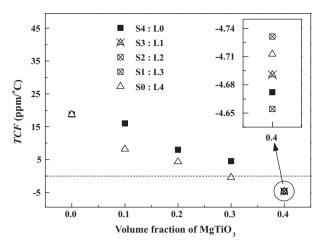


Fig. 6. TCF of MgTiO₃/polystyrene composites with volume fraction and mixture ratio (<45 μ m (S): 250–300 μ m (L)) of MgTiO₃ at 8 GHz.

lower TCF of MgTiO₃ ($-54.5 \text{ ppm/}^{\circ}\text{C}$) than that of PS ($18.74 \text{ ppm/}^{\circ}\text{C}$). For the composites with MgTiO₃ from $0.1V_f$ to $0.3V_f$, the TCF of the composites with small particle size of MgTiO₃ ($\leq 45 \mu \text{m}$) was larger than that of the composite with large particle size of MgTiO₃ ($250-300 \mu \text{m}$). However, the TCF value of the composites was not changed with mixture ratio of MgTiO₃ with different particle sizes at $0.4V_f$ under investigation. Good thermal stability (zero TCF) was obtained for the composites with $0.3V_f$ of MgTiO₃ ($250-300 \mu \text{m}$).

4. Conclusions

Effects of MgTiO₃ on the dielectric properties of MgTiO₃/polystyrene (PS) composites were investigated with respect to volume fraction, particle size and mixture ratio of MgTiO₃ with different particle sizes. The dielectric constant (K) of the composites with small particle size of MgTiO₃ (\leq 45 μm) was larger than that of the composites with large particle size of MgTiO₃ (250–300 μm), while the dielectric loss (tan δ) of the composites with small particle size of MgTiO₃ (\leq 45 μm) was smaller than that of the composites with large particle size of MgTiO₃ (250–300 μm). At the frequency range from 1 GHz to

7.3 GHz, the K of the composites showed the good frequency stability, while the tan δ was increased with frequency. MgTiO₃/PS composites with mixture ratio (\leq 45 μ m (S): 250–300 μ m (L)) of S3:L1 showed maximum K and minimum tan δ at 0.4 volume fraction (V_f) of MgTiO₃. Good thermal stability (zero TCF) was obtained for the composites with 0.3 V_f of MgTiO₃ (250–300 μ m).

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0078000).

References

- S. Thomas, V. Deepu, S. Uma, P. Mohanan, J. Philip, M.T. Sebastian, Preparation, characterization and properties of Sm₂Si₂O₇ loaded polymer composites for microelectronic applications, Materials Science and Engineering B163 (2009) 67–75.
- [2] E.S. Kim, C.J. Jeon, Microwave dielectric properties of ATiO₃ (A = Ni, Mg, Co, Mn) ceramics, Journal of the European Ceramic Society 30 (2010) 341– 346.
- [3] R. Inoue, Y. Odate, E. Tanabe, H. Kitano, A. Maeda, Data analysis of the extraction of dielectric properties from insulating substrates utilizing the evanescent perturbation method, IEEE Transactions on Microwave Theory and Techniques 54 (2006) 522–532.
- [4] B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range, IRE Transactions on Microwave Theory and Techniques 8 (1960) 402–410.
- [5] T. Nishikawa, K. Wakino, H. Tamura, H. Tanaka, Y. Ishikawa, Precise measurement method for temperature coefficient of microwave dielectric resonator material, IEEE MTT-S International Microwave Symposium Digest 87 (1987) 277–280.
- [6] C.P.L. Rubinger, D.X. Gouveia, J.F. Nunes, C.C.M. Salgueiro, J.A.C. Paiva, M.P.F. Graça, P. André, L.C. Costa, Microwave dielectric properties of NiFe₂O₄ nanoparticles ferrites, Microwave and Optical Technology Letters 49 (2006) 1341–1343.
- [7] B.W. Li, Y. Shen, Z.X. Yue, C.W. Nan, Influence of particle size on electromagnetic behavior and microwave absorption properties of Z-type Ba-ferrite/polymer composites, Journal of Magnetism and Magnetic Materials 313 (2007) 322–328.