

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 38S (2012) S557-S561

Effect of Al₂O₃ on thermal properties of 0.5CaAl₂Si₂O₈–0.5CaMgSi₂O₆ glass–ceramics

Chang Jun Jeon, Jong Kyu Lee, Eung Soo Kim*

Department of Materials Engineering, Kyonggi University, Suwon 443-760, Republic of Korea

Available online 27 May 2011

Abstract

The thermal properties of 0.5CaAl₂Si₂O₈-0.5CaMgSi₂O₆ glass-ceramics with Al₂O₃ were investigated as a function of Al₂O₃ volume fraction (V_f). With increasing of Al₂O₃ content, the anorthite (CaAl₂Si₂O₈) phase was increased up to 0.08 V_f of Al₂O₃ and then decreased, while the diopside (CaMgSi₂O₆) phase was not changed remarkably. The coefficient of thermal expansion (CTE) of the sintered specimens was dependent on the degree of crystallization of glasses. The thermal conductivity of the sintered specimens was affected by the thermal diffusivity and density rather than the specific heat capacity (C_p). The thermal conductivity of 0.5CaAl₂Si₂O₈-0.5CaMgSi₂O₆ glass-ceramics was increased and the CTE was decreased with the addition of Al₂O₃.

© 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Sintering; C. Thermal properties; D. Al₂O₃; D. Glass ceramics

1. Introduction

The anorthite–diopside (CaAl₂Si₂O₈–CaMgSi₂O₆) mixture system has been extensively used for industrial applications because it is not only inexpensive and abundant raw materials in glass batches but also forms the glass–ceramics with wide range of crystalline mixtures between anorthite and diopside [1]. Anorthite–diopside mixture system is also one of good candidates applicable to the package materials for lighting–emitting diodes (LED) chips in view point of the fast heat dissipations and easy control of thermal expansion coefficient between LED chips and package materials.

Although 0.5CaAl₂Si₂O₈-0.5CaMgSi₂O₆ glass-ceramics sintered at 950 °C for 3 h showed a thermal conductivity of 1.71 W/m °C from our preliminary experiment, it is not easy to apply this glass-ceramics for the practical application because the thermal conductivity is relatively low.

Generally, the thermal properties of glass-ceramics are dependent on the degree of crystallization. The crystallization of glasses can be achieved by the nucleation process of simple two-step heat treatment; the first step is an isothermal process to form embryo and to grow nucleus. The second step is necessary

to enhance crystal growth up to the desired size homogeneously dispersed in the volume [1]. For the effective control of crystallization and thermal properties, the crystalline Al_2O_3 powders with high thermal conductivity (28–35 W/m $^{\circ}$ C) were added to $0.5CaAl_2Si_2O_8$ – $0.5CaMgSi_2O_6$ glass–ceramics as impurities and the two-step heat treatment has been employed in this study.

Therefore, the dependences of thermal properties on the degree of crystallization of $0.5 \text{CaAl}_2 \text{Si}_2 \text{O}_8 - 0.5 \text{CaMgSi}_2 \text{O}_6$ glasses were investigated as a function of $\text{Al}_2 \text{O}_3$ content. With the addition of $\text{Al}_2 \text{O}_3$, the crystallization behaviors of glasses were also discussed with respect to the relative amount of anorthite (CaAl $_2 \text{Si}_2 \text{O}_8$) to diopside (CaMgSi $_2 \text{O}_6$) phase of the sintered specimens.

2. Experimental procedures

High-purity oxide powders of CaCO₃ (99%), Al₂O₃ (99%), MgCO₃ (99.9%) and SiO₂ (99.9%) were used as starting materials. The powders were separately prepared according to the desired compositions of CaAl₂Si₂O₈ and CaMgSi₂O₆, and ground with ZrO₂ balls for 24 h in ethanol. The mixed powders were melted in a platinum crucible at 1550 °C for 3 h and quenched into distilled water. The cullets were pulverized and mixed according to the desired formula

^{*} Corresponding author. Tel.: +82 31 249 9764; fax: +82 31 244 6300. *E-mail address:* eskim@kyonggi.ac.kr (E.S. Kim).

of $0.5 \text{CaAl}_2 \text{Si}_2 \text{O}_8 - 0.5 \text{CaMgSi}_2 \text{O}_6$, and then melted again at $1550\,^{\circ}\text{C}$ for 3 h. Pure glass frits were obtained by quenching of melts into distilled water. These glass frits were re-milled for 24 h with the addition of $\text{Al}_2 \text{O}_3$, and pressed isostatically into pellets under the pressure of 147 MPa. These pellets were sintered from 900 °C to 1000 °C for 3 h after holding at 790 °C for 3 h in air.

The densities of the sintered specimens were measured by Archimedes method. The differential thermal analysis (DTA) curve was obtained by a simultaneous thermal analyzer-mass spectrometer (STA 409PC-QMS 403C, NETZSCH, Germany). Powder X-ray diffraction analysis (XRD, D/Max-2500V/PC, RIGAKU, Japan) and scanning electron microscope (SEM, JSM-6700F, JEOL, Japan) were used to identify the phases developed during the sintering process and to evaluate the degree of crystallization of the sintered specimens. The thermal properties and thermal expansion coefficient (25–600 °C) of the sintered specimens were obtained by a laser flash apparatus (LFA 457, NETZSCH, Germany) and dilatometer (DIL 402 C, NETZSCH, Germany), respectively.

3. Results and discussion

The crystallization behavior of glasses can be determined from the thermal stability of glasses. A parameter usually employed to estimate the glass stability is the difference of onset temperature of crystallization (T_c) from glass transition temperature (T_g) , $(T_c - T_g)$ [2]. The larger $T_c - T_g$ delays the nucleation process. Also, the difference of peak temperature of crystallization (T_p) from T_c , $(T_p - T_c)$ is related to the rate of devitrification transformation of glassy phases [2]. Saad and Poulain [3] suggested the thermal stability parameter (S) by the following equation.

$$S = \frac{(T_p - T_c)(T_c - T_g)}{T_g}$$
 (1)

The *S* reflects the resistance to devitrification after the formation of glass.

Fig. 1 shows the DTA curves of $0.5 \text{CaAl}_2 \text{Si}_2 \text{O}_8 - 0.5 \text{CaMg}_5 \text{Si}_2 \text{O}_6$ glass powders with volume fraction (V_f) of Al₂O₃. The strong exothermic reaction peaked around 990 °C is attributed to the crystallization of glass. The thermal parameters obtained from the DTA curves are summarized in Table 1. With increasing of Al₂O₃ content, T_g of glasses was decreased up to 0.08 V_f and then increased, while T_c , T_p and $T_c - T_g$ were

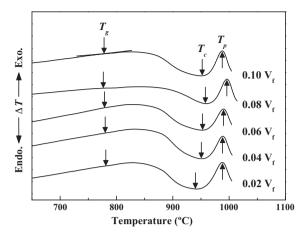


Fig. 1. DTA curves of $0.5CaAl_2Si_2O_8-0.5CaMgSi_2O_6$ glass powders with various volume fraction (V_f) of Al_2O_3 .

increased up to 0.08 V_f and then decreased. However, $T_p - T_c$ and S were decreased with the Al_2O_3 content except for the glass with 0.08 V_f of Al_2O_3 . These results could be explained that the addition of Al_2O_3 induced the increase of glass stability and the decrease of resistance to devitrification after the formation of glass. For the glass with 0.08 V_f of Al_2O_3 , the different behavior of thermal parameters could be attributed to the changes of relative amount of crystalline phases (anorthite and diopside) formed by the addition of Al_2O_3 (Table 2).

To study the dependence of thermal properties on the crystallization behaviors of 0.5CaAl₂Si₂O₈–0.5CaMgSi₂O₆ glasses with Al₂O₃ content, the sintering temperatures from 900 °C (before T_c) to 1000 °C (around T_p) after holding at 790 °C (around T_g) for 3 h were determined from the results of DTA data. The optimal sintering temperature of 1000 °C was selected for the highest sintered density to reduce the effects of density on the thermal properties. The apparent (A_D) and relative (R_D) densities of the sintered specimens were remarkably decreased at 0.08 V_f of Al₂O₃, as shown in Table 2. These results could be attributed to the effect of crystalline phases on the sinterability which could be confirmed by XRD patterns of the specimens.

XRD patterns of $0.5 \text{CaAl}_2 \text{Si}_2 \text{O}_8 - 0.5 \text{CaMgSi}_2 \text{O}_6$ with various V_f of $Al_2 \text{O}_3$ specimens sintered from 900 °C to 1000 °C for 3 h are shown in Fig. 2. The triclinic anorthite (CaAl $_2 \text{Si}_2 \text{O}_8$), monoclinic diopside (CaMgSi $_2 \text{O}_6$) and rhombohedral α -Al $_2 \text{O}_3$ phases were detected through the entire range of compositions. The degree of crystallization of the glasses with $0.02 \ V_f$ of Al $_2 \text{O}_3$ was increased with increasing of sintering temperature from 900 °C to 1000 °C (Fig. 2(a)). For

Table 1 Thermal parameters of 0.5CaAl₂Si₂O₈-0.5CaMgSi₂O₆ glass powders with various volume fraction (V_f) of Al₂O₃ obtained from DTA (T_g : glass transition temperature, T_c : onset temperature of crystallization, T_p : peak temperature of crystallization, S: thermal stability parameter).

Al ₂ O ₃ (V _f)	T_g (°C)	T_c (°C)	T_p (°C)	$T_c - T_g$ (°C)	$T_p - T_c$ (°C)	<i>S</i> (°C)
0.02	781	940	988	159	48	9.79
0.04	780	951	989	171	38	8.31
0.06	779	953	990	174	37	8.27
0.08	776	958	996	182	38	8.93
0.10	778	952	988	174	36	7.96

Table 2 Degree of crystallization and physical properties of 0.5CaAl₂Si₂O₈-0.5CaMgSi₂O₆ with volume fraction (V_f) of Al₂O₃ specimens sintered at 1000 °C for 3 h (I_A and I_B : relative amount of anorthite and diopside, X_C , X_A and X_D : degree of crystallization of specimens, anorthite and diopside, A_D and R_D : apparent and relative densities, CTE: coefficient of thermal expansion, C_D : specific heat capacity).

Al ₂ O ₃ (V _f)	Relative amount		Degree of crystallization			A_D (g/cm ³)	R_D (%)	CTE (10 ⁻⁶ /°C)	C_p (J/g °C)
	I_A (%)	<i>I</i> _D (%)	X_c (%)	X_A (%)	X_D (%)				
0.02	70.2	29.8	83.4	58.5	24.9	2.827	93.7	6.32	0.772
0.04	70.5	29.5	83.9	59.1	24.8	2.835	93.3	6.48	0.742
0.06	71.0	29.0	83.5	59.3	24.2	2.843	93.0	6.37	0.732
0.08	72.4	27.6	83.2	60.2	23.0	2.763	89.8	6.30	0.731
0.10	71.8	28.2	83.0	59.5	23.4	2.836	91.6	6.27	0.749

the specimens sintered at 1000 °C, the amount of α-Al₂O₃ phase was increased with Al₂O₃ content (Fig. 2(b)). The XRD peak intensities of two crystalline phases (anorthite and diopside) were also changed with the sintering temperature and/ or Al₂O₃ content. It has been reported [4] that anorthite resulted from the reaction between glass and crystalline Al₂O₃ powder is formed at the initial stage of sintering, and growing further until sintering is finished. With increasing of Al₂O₃ content, the integral intensity of the main XRD peak for diopside ($2\theta = 30^{\circ}$) showed nearly a constant, while that for anorthite $(2\theta = 28^{\circ})$ was increased up to $0.08\,V_{\rm f}$ and then decreased due to the imperfect dispersion of Al₂O₃ particles at 0.10 V_f. These results are agreed with the results for the anorthite-diopside system with Al₂O₃ reported by Kim et al. [5]. For the sintered specimens with 0.08 V_f of Al₂O₃, the decrease of density (Table 2) could be attributed to the increase of anorthite phase because the density of anorthite (2.761 g/cm³) is smaller than those of diopside (3.236 g/cm³) and/or Al₂O₃ (3.987 g/cm³).

For the specimens sintered at $1000 \,^{\circ}\text{C}$ for 3 h, SEM micrographs of the specimens with various V_f of Al_2O_3 are shown in Fig. 3. Characteristic lamellar crystals of anorthite $(CaAl_2Si_2O_8)$ and bead of diopside $(CaMgSi_2O_6)$ were

observed, being cemented with residual glass in the glass-ceramics, as reported by Leonelli et al. [1]. With increasing of Al_2O_3 content, the lamellar crystals of anorthite was increased up to $0.08~V_f$ and then decreased. These results are in agreement with the results of density and XRD data (Table 2). Since the thermal properties of sintered specimens were affected by density resulted from the relative amount of each phase, the lamellar crystals of anorthite with fissure will have a decisive effect on the thermal properties.

According to Demirkesen et al. [6], the thermal properties of silica-based glass–ceramics with Al_2O_3 are dependent on the type and amounts of crystalline phases as well as the amount and composition of the residual glassy phase. Therefore, the degree of crystallization (X_c) of the specimens was calculated using the following equation reported by Challa–Hermans–Weidinger [7] and are summarized in Table 2.

$$X_c(\%) = \left[1 - ((I_a)_{2\theta}/(I_a)_{2\theta^*})\right] \times 100 \tag{2}$$

where $(I_a)_{2\theta}$ and $(I_a)_{2\theta^*}$ are the amorphous intensities of the sintered specimens and glass powders at same range of 2θ (32–33°), respectively. The crystallization degrees of anorthite

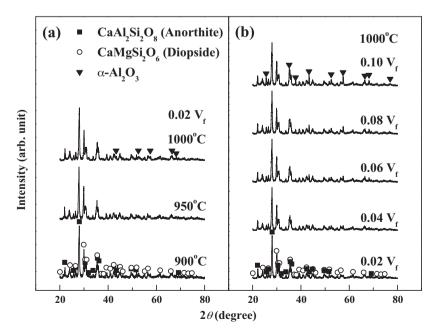


Fig. 2. XRD patterns of 0.5CaAl₂Si₂O₈-0.5CaMgSi₂O₆ with 0.02 volume fraction (V_f) of Al₂O₃ specimens sintered from 900 °C to 1000 °C for 3 h (a) and those with various V_f of Al₂O₃ specimens sintered at 1000 °C for 3 h (b).

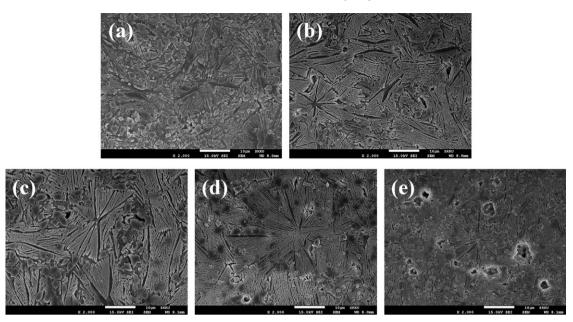


Fig. 3. SEM micrographs of 0.5CaAl₂Si₂O₈-0.5CaMgSi₂O₆ with volume fraction (V_f) of Al₂O₃ specimens sintered at 1000 °C for 3 h (bar = $10 \mu m$); (a) $0.02 V_f$, (b) $0.04 V_f$, (c) $0.06 V_f$, (d) $0.08 V_f$ and (e) $0.10 V_f$.

 (X_A) and diopside (X_D) were determined from the relative amount of each phase (anorthite (I_A) and diopside (I_D)) obtained by the integral intensity of main XRD peaks for anorthite and diopside, as shown in Table 2. With increasing of Al_2O_3 content, the coefficient of thermal expansion (CTE) of the specimens was increased up to 0.04 V_f and then decreased. This result is agreed with the tendency of the degree of crystallization (X_c) of $0.5CaAl_2Si_2O_8$ – $0.5CaMgSi_2O_6$ glass–ceramics with Al_2O_3 content (Table 2).

Fig. 4 shows the thermal conductivity and diffusivity of $0.5\text{CaAl}_2\text{Si}_2\text{O}_8$ – $0.5\text{CaMgSi}_2\text{O}_6$ with various V_f of Al_2O_3 specimens sintered at $1000\,^{\circ}\text{C}$ for 3 h. In general, the thermal conductivity can be obtained from thermal diffusivity, density and specific heat capacity (C_p). The thermal diffusivity of the specimens was increased with Al_2O_3 content. These results are due to the fact that Al_2O_3 affects the diffusion mechanism at the initial stages of sintering, causing a decrease of activation energy of diffusion [8]. With increasing of Al_2O_3 content, the

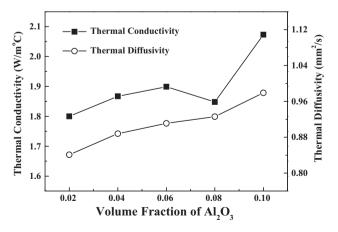


Fig. 4. The thermal conductivity and diffusivity of 0.5CaAl₂Si₂O₈-0.5CaMg-Si₂O₆ with various volume fraction of Al₂O₃ specimens sintered at 1000 °C for 3 h.

thermal conductivity of the specimens was increased due to the higher thermal conductivity of Al₂O₃ (28–35 W/m °C) than 0.5CaAl₂Si₂O₈–0.5CaMgSi₂O₆ glass–ceramics (1.71 W/m °C) except for specimens with 0.08 V_f of Al₂O₃. The decrease of thermal conductivity at $0.08\ V_{\rm f}$ is due to the decrease of sintered density resulted from the increase of anorthite (CaAl₂Si₂O₈) phase with lower thermal conductivity than that of diopside (CaMgSi₂O₆) (Table 2). However, the C_n with Al₂O₃ content was not changed remarkably from 0.731 J/ g °C (0.08 V_f) to 0.772 J/g °C (0.02 V_f) (Table 2). Therefore, the thermal conductivity of the specimens was affected by the thermal diffusivity and density rather than C_p in this study. By the addition of Al₂O₃, the thermal conductivity of 0.5CaAl₂Si₂O₈-0.5CaMgSi₂O₆ glass-ceramics was effectively increased (Fig. 4) and CTE was decreased (Table 2). Comparing to the soda-lime glass (thermal conductivity = 0.9–1.3 W/m °C, CTE = 9×10^{-6} /°C) and FR-4 glass epoxy (thermal conductivity = 0.2 W/m °C, CTE = 12- 16×10^{-6} /°C), the thermal conductivity (2.07 W/m °C) and CTE $(6.27 \times 10^{-6})^{\circ}$ C) of 0.5CaAl₂Si₂O₈-0.5CaMgSi₂O₆ with $0.10 V_f$ of Al_2O_3 could be applicable to the LED multilayer ceramic packages with low temperature co-fired ceramic (LTCC) technology.

4. Conclusions

For the sintered specimens of $0.5CaAl_2Si_2O_8-0.5CaMgSi_2O_6$ with Al_2O_3 , the triclinic anorthite (CaAl $_2Si_2O_8$), monoclinic diopside (CaMgSi $_2O_6$) and rhombohedral α -Al $_2O_3$ phases were confirmed through the entire range of compositions.

With increasing of Al_2O_3 content, the coefficient of thermal expansion (CTE) of the specimens sintered at $1000\,^{\circ}\text{C}$ for 3 h was increased up to 0.04 volume fraction (V_f) and then decreased, which could be attributed to the degree of crystallization of the specimens with Al_2O_3 content. The

thermal conductivity of sintered specimens was increased due to the increase of thermal diffusivity with Al_2O_3 content. For the specimens with $0.08~V_f$ of Al_2O_3 , the decrease of thermal conductivity is due to the increase of relative amount of anorthite to diopside phase.

Acknowledgements

This work was supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy.

References

C. Leonelli, T. Manfredini, M. Paganelli, P. Pozzi, G.C. Pellacani, Crystallization of some anorthite-diopside glass precursors, Journal of Materials Science 26 (1991) 5041–5046.

- [2] A. Goel, E.R. Shaaban, F.C.L. Melo, M.J. Ribeiro, J.M.F. Ferreira, Non-isothermal crystallization kinetic studies on MgO–Al₂O₃–SiO₂–TiO₂ glass, Journal of Non-Crystalline Solids 353 (2007) 2383–2391.
- [3] M. Saad, M. Poulain, Glass forming ability criterion, Materials Science Forum 19/20 (1987) 11–18.
- [4] D. Suvorov, M. Valant, Bi-based compounds for glass-free LTCC technology, Journal of the Ceramic Society of Japan 112 (2004) S1557–S1562.
- [5] J. Kim, S. Hwang, W. Sung, H. Kim, Effect of anorthite and diopside on dielectric properties of Al₂O₃/glass composite based on high strength of LTCC substrate, Journal of Materials Science 43 (2008) 4009– 4015.
- [6] E. Demirkesen, Z.E. Erkmen, N. Yildiz, Effect of Al₂O₃ additions on the thermal expansion behavior of a Li₂O–ZnO–SiO₂ glass–ceramic, Journal of the American Ceramic Society 82 (1999) 3619–3621.
- [7] H.S. Kim, R.D. Rawlings, P.S. Rogers, Quantitative determination of crystalline and amorphous phases in glass-ceramics by X-ray diffraction analysis, British Ceramic, Transactions and Journal 88 (1989) 21–25.
- [8] K. Matsui, N. Ohmichi, M. Ohgai, N. Enomoto, J. Hojo, Sintering kinetics at constant rates of heating: effect of Al₂O₃ on the initial sintering stage of fine zirconia powder, Journal of the American Ceramic Society 88 (2005) 3346–3352.