

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 38S (2012) S95-S99

Structure–property relations of ferroelectric BaTiO₃ ceramics containing nano-sized Si₃N₄ particulates

Orapim Namsar^a, Anucha Watcharapasorn^{a,b}, Sukanda Jiansirisomboon^{a,b,*}

^a Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand ^b Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Available online 30 April 2011

Abstract

Barium titanate/silicon nitride (BaTiO₃/xSi₃N₄) powder (when x = 0, 0.1, 0.5, 1 and 3 wt%) were prepared by solid-state mixed-oxide method and sintered at 1400 °C for 2 h. X-ray diffraction result suggested that tetragonality (c/a) of the BaTiO₃/xSi₃N₄ ceramics increased with increasing content of Si₃N₄. Density and grain size of BaTiO₃/xSi₃N₄ ceramic were found to increase for small addition (i.e. 0.1 and 0.5 wt%) of Si₃N₄ mainly due to the presence of liquid phase during sintering. BaTiO₃ ceramics containing such amount of Si₃N₄ also showed improved dielectric and ferroelectric properties.

© 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: C. Dielectric properties; C. Ferroelectric properties; D. BaTiO₃ and titanates; D. Si₃N₄

1. Introduction

BaTiO₃ has become one of the most important electroceramic materials among all the ferroelectric materials [1]. BaTiO₃-based ferroelectrics transform from paraelectric phase to ferroelectric phase at Curie temperature ($T_C \sim 130$ °C). This transformation normally causes a complicated stress system in this ferroelectric material, and then results in a generation of internal stresses at room temperature which significantly affect properties of BaTiO₃. Therefore, much attention has been paid into development of a new approach to enhance properties of BaTiO₃ ceramics. One of the most interesting methods is based on 'nanocomposites concept' [2] by an incorporation nanosized second phases into BaTiO₃ ceramic matrix [3-5]. This method has been found to be a promising way to improve mechanical properties and electrical reliability of BaTiO₃ matrix. However, there are only a few studies about the electrical properties of BaTiO₃-based nanocomposite. In the present study, aims to fabricate new ferroelectric BaTiO₃-based ceramics using nano-particle of non-oxide compound, e.g.

E-mail address: sukanda@chiangmai.ac.th (S. Jiansirisomboon).

Si₃N₄, using a solid-state mixed-oxide method. The characterization particularly in terms of phase evolution, microstructures changes, dielectric and ferroelectric properties of BaTiO₃ ceramics were reported and discussed.

2. Experimental

BaTiO₃ powder was prepared by a solid-state mixed-oxide method. The starting chemicals used were BaCO₃ (98.5%, Fluka, Buchs, Switzerland) and TiO₂ (99%, Fluka, Buchs, Switzerland). The starting powders were weighed, ball-milled in ethanol for 24 h and dried using an oven drying method. After drying, the mixed powders were calcined at 950 °C for 2 h. For the BaTiO₃/Si₃N₄ powders, different percentages by weight (0, 0.1, 0.5, 1 and 3) of nano-sized Si₃N₄ (96%, 30–70 nm, Nano Amor, Los Alamos, USA) powder were mixed with in-house prepared BaTiO₃ powder. Each batch of the mixture was prepared using the same procedure mentioned earlier to form BaTiO₃/Si₃N₄ powders. Green compacts were formed by uniaxial pressing into disc-shaped pellets. The disc samples were sintered at 1400 °C for 2 h.

Phase characterization of BaTiO₃/xSi₃N₄ ceramics was carried out using X-ray diffractometry (XRD, Phillip Model X-pert, Eindhoven, Netherlands). Density of ceramics was determined using Archimedes' method. Microstructures of

^{*} Corresponding author at: Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. Tel.: +66 53 941921x631; fax: +66 53 943445.

sintered samples were examined using scanning electron microscopy (SEM, JEOL JSM-6335F, Tokyo, Japan). Average grain size was determined using a mean linear intercept method from SEM micrographs. Dielectric properties were measured at room temperature with a measured frequency of 100 kHz using LCR Hitester (Instek, 821, Tokyo, Japan). Ferroelectric hysteresis (*P–E*) loops were characterized using a computer controlled modified Sawyer–Tower circuit.

3. Results and discussion

Phase characteristics of $BaTiO_3/xSi_3N_4$ ceramics were revealed by X-ray diffraction patterns in Fig. 1. $BaTiO_3$ ceramic showed only tetragonal phase. A small amount of $Ba_2TiSi_2O_8$ phase started to appear for ceramic containing 1–3 wt% Si_3N_4 samples. This phase was likely to be the result of reaction between $BaTiO_3$ matrix and SiO_2 phase. The latter could be originally present in the starting powders or from decomposition of Si_3N_4 particles heated under oxidizing atmosphere [6] as in this experiment. Similar reaction product was also observed in $BaTiO_3$ –SiC system when their mixtures were heated above 1300 °C [5].

The effect of the Si_3N_4 content on the unit cell of $BaTiO_3$ ceramic is shown in Fig. 2.

The incorporation of $\mathrm{Si}_3\mathrm{N}_4$ nanoparticles led to a reduction in lattice parameter of a and c, with a slight increase in tetragonality (c/a). The distortion of the unit cell could be partly due to the substitution of Si into Ti position. Based on the ionic radius of Si^{4+} ion $(r_{\mathrm{si}}^{4+}=0.40$ [7]), it would preferentially substitute Ti $(r_{\mathrm{Ti}}^{4+}=0.605$ [7]) sites rather than Ba^{2+} $(r_{\mathrm{Ba}}^{2+}=1.35$ [7]) site.

The density values of BaTiO₃/xSi₃N₄ composites are listed in Table 1. Although the density of BaTiO₃ was rather low, its value was close to a range of relative density values (i.e. \sim 90–

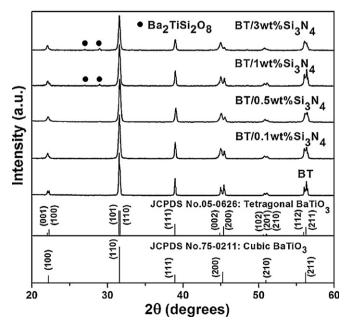


Fig. 1. XRD patterns of BaTiO₃/xSi₃N₄ ceramics.

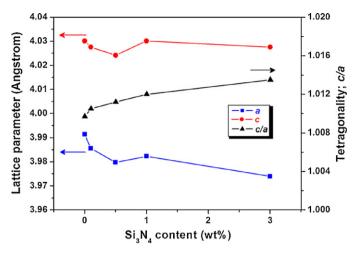


Fig. 2. Lattice parameter and tetragonality of BaTiO₃/xSi₃N₄ ceramics.

99%) reported for BaTiO₃ ceramics sintered at about 1400 °C [5,8-10]. Addition of small amount of Si₃N₄ caused an apparent increase in density. This was most likely to be due to the effect of liquid phase sintering. Since 0.1 wt% and 0.5 wt% Si₃N₄ were too small to cause any large change in melting point of BaTiO₃, the second phase Ba₂TiSi₂O₈ which had much lower melting point than BaTiO₃ could form liquid at grain boundaries of BaTiO₃ and enhanced the densification rate. Further increasing Si₃N₄ content however caused a decrease in density. The result indicated that Si₃N₄ content had significant effect on densification of BaTiO₃ ceramics. Similar results have been observed in glassy phase-BaTiO₃ system which showed that the densification of BaTiO₃ depended not only on the amount of glass addition but also on the glass former content [11]. Moreover, Lee et al. reported that adding SiO₂ sintering aids more than 0.3 mol% into $(Ba_{0.96}Ca_{0.04})(Ti_{0.85}Zr_{0.15})O_3$ ceramics lead to decrease in density, indicating that densification of (Ba_{0.96}Ca_{0.04})(Ti_{0.85}Zr_{0.15})O₃ ceramics was strongly dependent on SiO₂ content [12]. According to the liquid phase sintering theory [13], a proper quantity of liquid phase present in liquid phase sintered ceramic is an important factor to control densification of the ceramic.

SEM micrographs of thermally etched surfaces for BaTiO₃/ xSi₃N₄ ceramics are shown in Fig. 3. Equiaxed grains were observed for all samples. An increase in Si₃N₄ concentration dramatically increased the grain size of BaTiO₃/xSi₃N₄ ceramics as listed in Table 1. The extensive grain growth as well as the presence of flat content areas between grains could be associated with liquid-phase formation as mentioned earlier. From the study of Rase and Roy [14], the SiO₂–BaTiO₃ system also contained several low-melting point compounds besides Ba₂TiSi₂O₈. The existence of these liquid phases therefore gave rise to observed grain growth during sintering [15,16]. For samples containing 0.1 and 0.5 wt% Si₃N₄, the presence of liquid phase seemed to enhance densification by allowing pores to diffuse and be removed at grain boundaries, hence producing dense grain structure with improved density. However, adding more Si₃N₄ resulted in pore coalescence into the size as large as some of the grains. These large pores inhibited densification of grains and caused the samples to possess rather low density.

Table 1 Physical, dielectric and ferroelectric properties of $BaTiO_3/xSi_3N_4$ ceramics.

Si ₃ N ₄ content (wt%)	Relative density (%)	Average grain size (µm)	Dielectric props.		Ferroelectric props.		
			$\varepsilon_{\rm r}^{\ a}$	tan δ ^a	$P_{\rm r} (\mu {\rm C/cm}^2)$	E _c (kV/cm)	$R_{\rm sq}$
0	77.8	2.14 ± 0.53	3023	0.0364	3.72	4.55	0.59
0.1	96.5	12.61 ± 1.55	3279	0.0102	5.08	4.82	0.61
0.5	92.0	20.13 ± 2.79	3036	0.0131	4.67	5.02	0.62
1	89.4	22.07 ± 4.49	2225	0.0321	4.40	6.53	0.63
3	85.1	33.07 ± 5.84	1465	0.0339	3.17	8.06	0.70

Note: Dielectric data obtained at a frequency of 100 kHz; superscript a indicates room temperature, $\varepsilon_{\rm r}$ is dielectric constant; $tan~\delta$ is dielectric loss; $P_{\rm r}$ is remanent polarization; $E_{\rm c}$ is coercive field and $R_{\rm sq}$ is loop squareness.

The room temperature dielectric constant and loss of sintered ceramics measured at $100\,\mathrm{kHz}$ are listed in Table 1. The maximum dielectric constant was obtained for ceramic with $0.1\,\mathrm{wt\%}~Si_3N_4$ addition. This could be resulted from its

higher density compared to the other samples. The fall-off of dielectric constant in sample with higher Si_3N_4 content was due to lower sample density together with a higher amount of $Ba_2TiSi_2O_8$ and other secondary phases present in the samples.

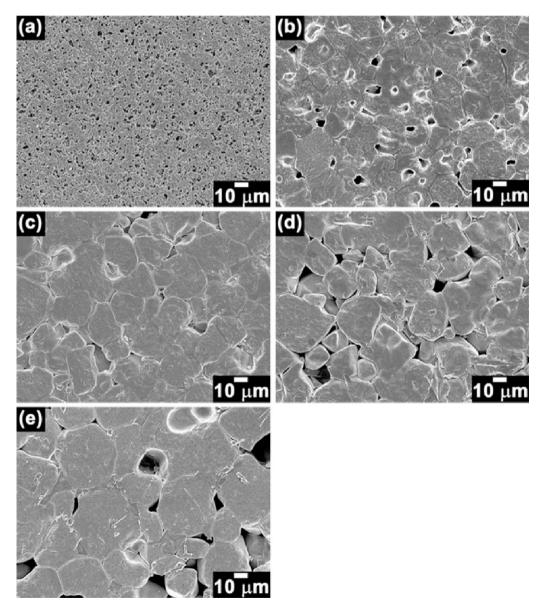


Fig. 3. SEM images of surfaces of $BaTiO_3/xSi_3N_4$ ceramics, where (a)–(e) represent x = 0, 0.1, 0.5, 1 and 3 wt%, respectively.

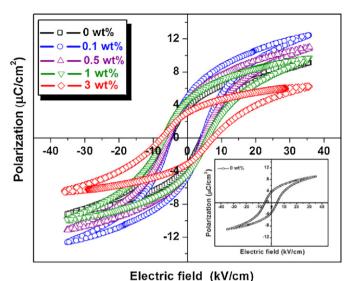


Fig. 4. P–E hysteresis loops of BaTiO $_3/x$ Si $_3$ N $_4$ ceramics measured at a frequency of 50 Hz.

The dielectric loss in $BaTiO_3/xSi_3N_4$ ceramics investigated in this study was found to have nearly the same value. The slightly lower dielectric loss in 0.1 and 0.5 wt% Si_3N_4 containing samples could be attributed to their relatively high density.

Ferroelectric properties of BaTiO₃/xSi₃N₄ ceramics in terms of P-E hysteresis loops plotted as a function of Si₃N₄ content are shown in Fig. 4. The values of remanent polarization (P_r) and coercive field (E_c) are also listed in Table 1. BaTiO₃ ceramic showed a slim ferroelectric loop with 4.55 kV/cm of E_c , 3.72 μ C/cm² of P_r and 0.59 of loop squareness (R_{sq}) . This result resembled with work of Chaisan et al. [17] whose BaTiO₃ sample showed a ferroelectric loop with 4.63 kV/cm of E_c , 7.78 μ C/cm² of P_r and 0.49 of R_{sq} . These loops seemed to be typical hysteresis loop for BaTiO₃ ceramic [1]. Addition of 0.1 wt% Si₃N₄ enhanced ferroelectric activity such that the value of P_r increased while E_c remained nearly the same. This seemed to be the effect of large grain and high density of this sample. A further increase in Si₃N₄ reduced the value of P_r with corresponding increase in E_c , indicating that energy loss also increased in agreement with dielectric measurement. In these samples, both low density and the presence of secondary phase seemed to play a role in this reduced ferroelectric behaviour. Although, substitution of Si⁴⁺ into Ti⁴⁺ sites could also affect ferroelectric properties, its influence as isovalent ionic substitution was less than that of physical and microstructural aspects of these ceramics. In this study, therefore, Si₃N₄ could be used as additive to effectively change densification behaviour and microstructure of BaTiO₃ ceramics which, in turn, improved its dielectric and ferroelectric properties.

4. Conclusions

Monolithic BaTiO₃ and BaTiO₃/xSi₃N₄ ceramics were prepared by a simple solid-state mixed oxide method. BaTiO₃ ceramic was identified by X-ray diffraction method as a

material with a perovskite structure having tetragonal phase. Addition of Si_3N_4 in $BaTiO_3$ ceramics resulted in a slightly smaller unit cell size while tetragonal structure was maintained. The grain size and density of $BaTiO_3/xSi_3N_4$ ceramic increased for the samples containing small amount of Si_3N_4 . The enhancement was mainly due to the presence of liquid phase in the Si_3N_4 added. For small addition of Si_3N_4 , both dielectric and ferroelectric properties were also improved, which was contributed to high density and better microstructural homogeneity of ceramic samples.

Acknowledgements

This work is financially supported by the Thailand Research Fund (TRF) and the National Research University Project under Thailand's Office of the Higher Education Commission (OHEC), the National Metal and Materials Technology Center (MTEC) and the National Science and Technology Development Agency (NSTDA). The Faculty of Science and the Graduate School, Chiang Mai University, are also acknowledged. O. Namsar would like to thank the TRF through the Royal Golden Jubilee Ph.D. Program.

References

- A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, John Wiley & Sons, Chichester, 2003.
- [2] K. Niihara, New design concept of structural ceramics: ceramic nanocomposite, Journal of the Ceramic Society of Japan 99 (10) (1991) 974– 982.
- [3] H.J. Hwang, M. Toriyam, K. Niihara, In situ fabrication of ceramic/metal nanocomposites by reduction reaction in barium titanate-metal oxide systems, Journal of the European Ceramic Society 18 (1998) 2193–2199.
- [4] S. Jiansirisomboon, A. Watcharapasorn, Effects of alumina nano-particulates addition on mechanical and electrical properties of barium titanate ceramics, Current Applied Physics 8 (2008) 48–52.
- [5] H.J. Hwang, T. Sekino, K. Ota, K. Niihara, Perovskite-type BaTiO₃ ceramics containing particulate SiC: Part I structure variation and phase transformation, Journal of Materials Science 31 (1996) 4617–4627.
- [6] D.W. Richerson, Modern Ceramic Engineering, second ed., Marcel Dekker, New York, 1992.
- [7] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalogenides, Acta Crystallographica A32 (1976) 751–767.
- [8] C. Miclea, C. T?n?soiu, I. Spânulescu, C.F. Miclea, A. Gheorghiu, L. Amarande, M. Cioangher, C.T. Miclea, Microstructure and properties of barium titanate ceramics prepared by mechanochemical synthesis, Romanian Journal of Information Science and Technology 10 (2007) 335–345.
- [9] E. Brzozowski, M.S. Castro, C.R. Foschini, B. Stojanovic, Secondary phases in Nb-doped BaTiO₃ ceramics, Ceramics International 28 (2002) 773–777.
- [10] S. Marković, M. Miljković, Č. Jovalekić, S. Mentus, D. Uskoković, Densification, microstructure, and electrical properties of BaTiO₃ (BT) ceramics prepared from ultrasonically de-agglomerated BT powders, Materials and Manufacturing Processes 24 (2009) 1114–1123.
- [11] S.-F. Wang, T.C.K. Yang, Y.-R. Wang, Y. Kuromitsu, Effect of glass composition on the densification and dielectric properties of BaTiO₃ ceramics, Ceramics International 27 (2001) 157–162.
- [12] Y.-C. Lee, C.-W. Lin, W.-H. Lu, Influence of SiO₂ addition on the dielectric properties and microstructure of (Ba_{0.96}Ca_{0.04})(Ti_{0.85}Zr_{0.15})O₃ ceramics, International Journal of Applied Ceramic Technology 6 (2009) 692–701.

- [13] M.N. Rahaman, Ceramic Processing and Sintering, Marcel Dekker, New York 1995
- [14] D.E. Rase, R. Roy, Phase equilibria in the system BaTiO₃–SiO₂, Journal of the American Ceramic Society 38 (11) (1955) 389–395.
- [15] G. Liu, R.D. Roseman, Effect of BaO and SiO_2 addition on PTCR BaTiO $_3$ ceramics, Journal of Materials Science 34 (1999) 4439–4445.
- [16] Y.-S. Yoo, H. Kim, D.-Y. Kim, Effect of SiO_2 and TiO_2 addition on the exaggerated grain growth of $BaTiO_3$, Journal of the European Ceramic Society 17 (1997) 805–811.
- [17] W. Chaisan, R. Yimnirun, S. Ananta, D.P. Cann, Dielectric and ferroelectric properties of lead zirconate titanate—barium titanate ceramics prepared by a modified mixed-oxide method, Materials Chemistry and Physics 104 (2007) 113–118.