

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 39 (2013) 1639-1643

www.elsevier.com/locate/ceramint

Dielectric enhancement of BaSrTi_{1.1}O₃/BaSrTi_{1.05}O₃/BaSrTiO₃ multilayer thin films prepared by RF magnetron sputtering

Zunping Xu^{a,b}, Dongxu Yan^a, Dingquan Xiao^a, Ping Yu^a, Jianguo Zhu^{a,*}

^aCollege of Materials Science and Engineering, Sichuan University, Chengdu 610064, China ^bCollege of Materials Science and Engineering, Southwest University, Chongqing 400715, China

Received 23 June 2012; received in revised form 18 July 2012; accepted 1 August 2012 Available online 9 August 2012

Abstract

BaSrTi_{1.1}O₃/BaSrTi_{1.05}O₃/BaSrTiO₃ multilayer (BSTM) thin films and BaSrTiO₃ (BST) thin films were deposited on LaNiO₃ (LNO)/SiO₂/Si substrates by radio frequency (RF) magnetron sputtering at substrate temperature of 400 °C, respectively. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigations revealed that all the films have uniform and crack-free surface morphology with a perovskite structure. The dielectric constant of the BSTM thin films was increased and dielectric loss was decreased compared with those of uniform BST thin films. The dielectric constant of 420, dielectric loss of 0.017, and dielectric tunability of 38% were achieved for the BSTM thin films.

Keywords: A. Films; C. Dielectric properties; D. BaTiO₃ and titanates

1. Introduction

Perovskite barium strontium titanate (BST) has excellent dielectric properties. As a result, BST thin films have attracted considerable interest for practical use such as high density dynamic random access memories (DRAM) capacitors [1,2] and tunable microwave devices [3,4]. In recent years, embedding passive components into printed circuit board or package substrate is becoming a key technology for system-in-package. To produce embedded thin film capacitors, ferroelectric materials can be used as the dielectric layer. Among various ferroelectrics, BST has been paid much attention worldwide [5,6]. For either DRAM capacitor or embedded capacitor, the dielectric layer is required to have a high dielectric constant, a high dielectric nonlinearity and a low dielectric loss. The dielectric properties at microwave are strongly affected by many factors, such as films thickness, grain size, Ba/Sr ratio, and film stress. Recently, deviation of the (Ba+Sr)/Ti

*Corresponding author. Tel.: +86 028 85412415; fax: +86 028 85416050.

E-mail address: nic0400@scu.edu.cn (J. Zhu).

ratio from the stoichiometric value of unity is reported to have a dramatic effect on the dielectric properties. Stemmer et al. [7] fabricated $(Ba_xSr_{1-x})Ti_{1+y}O_{3+z}$ thin films by chemical vapor deposition. Reasonable film behavior is generally achieved up to y=0.15, which greatly exceeds the solubility of excess Ti in bulk BST, of approximately y < 0.001. Jia et al. [8] deposited the epitaxial Ba_{0.6}Sr_{0.4}TiO₃ films with TiO2-doped, and found that by controlling the amount of TiO2 added to BST reduced the dielectric loss of the films. However, in those papers, the dielectric constant and tunability of the films also reduced with the (Ba+Sr)/Ti ratio increased. In order to optimize the reasonable tunability and dielectric loss of the BST tunable devices, a multilayer structure was discussed. Zhao et al. [9] prepared BaTiO₃/ BaSrTiO₃/SrTiO₃ multilayer thin films, and found that the dielectric constant was significantly increased. Peng et al. [10] fabricated $Ba_{0.6}Sr_{0.4}Ti_{1+y}O_3/Ba_{0.6}Sr_{0.4}TiO_3/Ba_{0.6}Sr_{0.4-}$ Ti_{1+v}O₃ multilayer structure films. They reported that the multilayer structure was beneficial to lowering the dielectric loss and enhancing the tunability.

The perovskite oxide LaNiO₃ (LNO) electrode has attracted the special attention of several research groups because of a good lattice match and structural compatibility

with ferroelectric films, which are promising for improving crystal growth and electrical properties of films. It is well-known that LNO has the advantage of decreasing the leakage current and polarization fatigue of the ferroelectric thin films. Chu and Lin [11] showed that the BST films had crystallization with the LNO electrode even at a low temperature of 200 °C. However, the dielectric constant of BST films was moderate and the crystallinity needs to be further improved. There are few studies on the multilayer thin films fabricated by RF magnetron sputtering technology at low temperature.

In the present work, BSTM thin films and BST thin films were prepared by RF magnetron sputtering technology on LNO/SiO₂/Si substrate at substrate temperature of 400 °C. The microstructure and dielectric properties of the BSTM thin films and BST thin films were investigated.

2. Experiment

LNO bottom electrode about 80 nm in thickness was deposited on SiO₂/Si substrate using the RF magnetron sputtering. Then, the sample was annealed at 750 °C for 1.5 min in rapid thermal annealing (RTA) furnace (Mila-3000, ULVAC-RIKO, Japan) to pre-crystallized LNO film. The heating ratio of RTA was 40 °C/s. After that, 380 nm-thick BST thin films were grown on LNO/SiO₂/Si substrates at 400 °C by the RF magnetron sputtering. The BSTM thin films were deposited on LNO/SiO₂/Si substrates by the RF magnetron sputtering using three stoichiometry targets in turn: BaSrTiO₃, BaSrTi_{1.05}O₃ (BST_{1.05}), BaSrTi_{1.1}O₃ (BST_{1.1}). Each target was sputtered for an hour, the total thickness of BSTM thin films is about 380 nm. The other sputtering parameters of BST films and BSTM films were kept under the same conditions and summarized in Table 1. Finally, the samples were annealed at 800 °C for 15 s in RTA and at 700 °C for 1.5 h in a tube furnace and then cooled naturally. The heating ratio was 20 °C/s for RTA and 2 °C/min for conventional heating process.

The crystal structure of the BSTM films and BST films was analyzed by X-ray diffraction (XRD). The surface morphology was determined by a scanning electron microscopy (SEM) and atomic force microscopy (AFM). For electrical measurements of the BSTM films and BST films, top gold (Au) electrodes of 0.4 mm diameter were deposited through a shadow mask onto the BSTM films and BST films by sputtering. The dielectric properties and C-V

Deposition conditions of LNO, BST and BSTM thin films.

Item	LNO	BST	BSTM
Target-substrate distance (mm)	50	50	50
Substrate temperature (°C)	300	400	400
RF power (W)	60	70	70
Rate of Ar:O ₂	4:1	4:1	4:1
Working pressure (Pa)	2	3.5	3.5

characteristics of Au/BSTM/LNO and Au/BST/LNO capacitors were measured by using an Agilent 4294 A impedance analyzer at room temperature.

3. Results and discussion

Fig. 1 shows the XRD patterns of the BSTM thin films and BST thin films. As shown in Fig. 1, all films are polycrystalline with a perovskite structure. The peaks of (110) is much higher than the others, indicating clearly a preferred (110) orientation in these films.

The microstructure, such as crystallinity and grain size, is one of the key parameters determining the electrical properties of dielectric thin film capacitor. The surface morphologies and cross-sectional images of BSTM film and BST film was analyzed using SEM and AFM. Fig. 2 shows the SEM and AFM micrographs of BSTM film and BST film. It can be observed that all films show compact, smooth and uniform morphologies, no cracks and pits can be found on the surface of the films. The BST films have larger grain than the BSTM films. For BSTM films, the average grain size determined from the SEM is about 50 nm and the root-mean square (RMS) roughness is around 3.5 nm by the AFM analysis. For BST films, the average grain size is about 60 nm and the RMS roughness is around 3.8 nm. The faintly visible interfaces can be observed inside the compositionally graded thin films in the cross-sectional SEM images. The BSTM films possess a polycrystalline structure and the BST films possess a columnar structure.

Fig. 3 shows the dielectric constant (ε_r) and dielectric loss $(\tan \delta)$ of BSTM thin films and BST thin films as a function of frequency at room temperature. The relative dielectric constant was calculated from the capacitance data using the classical formula of parallel-plate capacitors. From Fig. 3 we can see that the dielectric constant of all the films decreases with increasing frequency. The ε_r of

Fig. 1. XRD patterns of the samples: (a) BSTM thin films and (b) BST thin films.

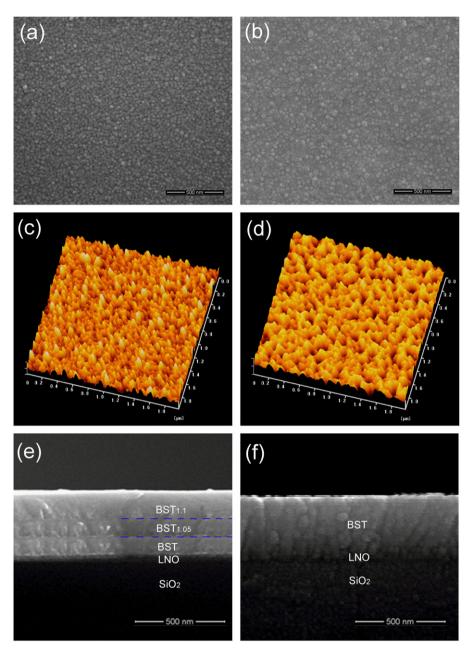


Fig. 2. Surface morphologies of the samples: (a) SEM images of BSTM thin films; (b) SEM images of BST thin films; (c) AFM images of BSTM thin films; (d) AFM images of BST thin films and cross-sectional images of the samples: (e) BSTM thin films; (f) BST thin films.

BSTM films is larger and $\tan \delta$ is lower than that of uniform BST films. It clearly means that the dielectric properties were enhanced by using ternary multilayer structure. The interface between BST_{1.1}, BST_{1.05} and BST layers has heterogeneous compositions, and a space charge layer has been introduced in this micro-region. According to Maxwell-Wagner model [12], the dielectric constant of the films with multilayer structure increases. It's also noted that the $\tan \delta$ decreases with increasing frequency in the range 100 Hz to 100 kHz, and attains the minimum value of 0.03 for BST films and 0.017 for BSTM films at 100 kHz, beyond that the $\tan \delta$ increases. It's reported that the stress at the interface region between different

layers plays an important role in the enhancement of the dielectric properties of multilayer thin films [9]. To clarify this argument, microstructure and interface of BSTM thin films will be studied in detail in the future.

Fig. 4 shows the variation of the tunability and the figure of merit (FOM) of BSTM films and BST films as a function of applied electric field at 100 kHz and room temperature. The tunability is defined as $[(\varepsilon(0)-\varepsilon(E))/\varepsilon(0)] \times 100\%$, where $\varepsilon(0)$ and $\varepsilon(E)$ are the dielectric constant of BST films at zero electric field and applied electric field E, respectively. The FOM=tunability/tan δ is usually used to characterize the quality of tunable materials. The tunability reaches 38% at an applied electric field of 400 kV/cm for BSTM thin films,

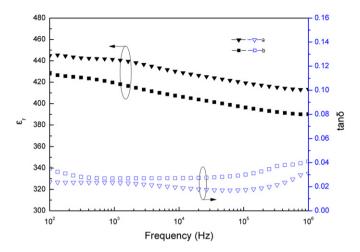


Fig. 3. ϵ_r and $\tan\delta$ of the samples: (a) BSTM thin films and (b) BST thin films

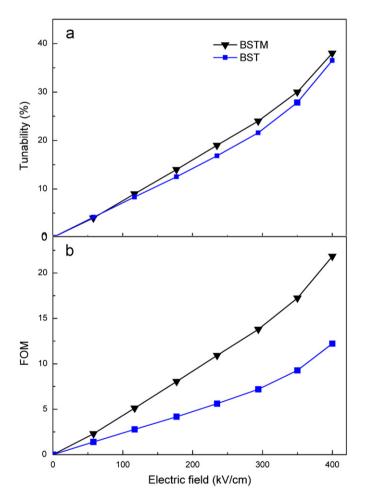


Fig. 4. Variation of electrical properties of the samples as a function of electric field: (a) tunability and (b) FOM.

which is larger than the value of 36.5% for BST thin films. Correspondingly, a larger value of FOM (21.8) can be obtained for BSTM thin films. It is manifested that multilayer structure is beneficial to enhancing the electrical properties of the thin films.

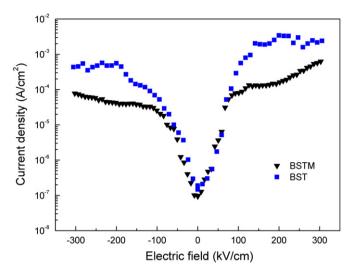


Fig. 5. Electric field dependence of the leakage current density of BSTM and BST thin films.

Fig. 5 shows the leakage current—voltage characteristics of BSTM and BST thin films. In this figure, the BSTM thin films show much better leakage current characteristics. A rougher surface may increase the leakage current [13]. Moreover, the grain boundary was the conduction path of the leakage current in the polycrystalline dielectric thin films. The BSTM thin films had smaller grains. These relatively small grains were more effective at blocking the short-cut routes in the film, and thus reduced the leakage current in the BSTM thin film [14]. The leakage current density curves of the samples are asymmetric, those imply that the leakage current is electrode-limited. The leakage current in negative bias is mainly affected by the interface between BSTM or BST and Au top electrodes.

4. Conclusions

BSTM thin films and BST thin films were deposited on LNO/SiO₂/Si substrates by RF magnetron sputtering technology, respectively. All the films were composed of polycrystalline perovskite structure with a crack free, uniform and compact surface. Dielectric measurement revealed that the BSTM films had better electrical properties, showing the dielectric constant of 420, dielectric loss of 0.017 and dielectric tunability 38% at room temperature and 100 kHz, respectively. Our results indicated that the multilayer structure is beneficial to enhancing the electrical properties of the thin films.

Acknowledgments

The author wish to thank the National Natural Science Foundation of China for sponsoring this project (Nos. u0837605 and 60771016).

References

- C.S. Hwang, S.O. Park, H.J. Cho, C.S. Kang, H.K. Kang, S.I. Lee, et al., Deposition of extremely thin (BA,SR)TIO₃ thin-films for ultralarge-scale integrated dynamic random-access memory application, Applied Physics Letters 67 (1995) 2819–2821.
- [2] A.I. Kingon, J.P. Maria, S.K. Streiffer, Alternative dielectrics to silicon dioxide for memory and logic devices, Nature 406 (2000) 1032–1038.
- [3] P. Padmini, T.R. Taylor, M.J. Lefevre, A.S. Nagra, R.A. York, J.S. Speck, Realization of high tunability barium strontium titanate thin films by rf magnetron sputtering, Applied Physics Letters 75 (1999) 3186–3188.
- [4] H.S. Kim, H.G. Kim, I.D. Kim, K.B. Kim, J.C. Lee, High-tunability and low-microwave-loss Ba_{0.6}Sr_{0.4}TiO₃ thin films grown on highresistivity Si substrates using TiO₂ buffer layers, Applied Physics Letters 87 (2005) 212903.
- [5] M. Jain, S.B. Majumder, R.S. Katiyar, A.S. Bhalla, Novel barium strontium titanate Ba_{0.5}Sr_{0.5}TiO₃/MgO thin film composites for tunable microwave devices, Materials Letters 57 (2003) 4232–4236.
- [6] Z.Q. Wei, H.P. Xu, M. Noda, M. Okuyama, Preparation of Ba_xSr_{1-x}TiO₃ thin films with seeding layer by a sol-gel method, Journal of Crystal Growth 237–239 (2002) 443–447.
- [7] S. Stemmer, S.K. Streiffer, N.D. Browning, A.I. Kingon, Accommodation of nonstoichiometry in (100) fiber-textured (Ba_xSr_{1-x})Ti_{1+y}O_{3+z} thin films grown by chemical vapor deposition, Applied Physics Letters 74 (1999) 2432–2434.

- [8] Q.X. Jia, B.H. Park, B.J. Gibbons, J.Y. Huang, Dielectric response and structural properties of TiO₂-doped Ba_{0.6}Sr_{0.4}TiO₃ films, Applied Physics Letters 81 (2002) 114–116.
- [9] N. Zhao, L.X. Wan, L.Q. Cao, D.Q. Yu, S.H. Yu, R. Sun, Dielectric enhancement of BaTiO₃/BaSrTiO₃/SrTiO₃ multilayer thin films deposited on Pt/Ti/SiO₂/Si substrates by sol–gel method, Materials Letters 65 (2011) 3574–3576.
- [10] D.W. Peng, J.R. Cheng, Z.Y. Meng, Low dielectric dissipation and enhanced tenability of Ba_{0.6}Sr_{0.4}TiO₃ thin films by the modified composition and multilayer structure, Journal of Electroceramics 21 (2008) 668–671.
- [11] C.M. Chu, P. Lin, Electrical properties and crystal structure of (Ba,Sr)TiO₃ films prepared at low temperatures on a LaNiO₃ electrode by radio-frequency magnetron sputtering, Applied Physics Letters 70 (1997) 249–251.
- [12] Q. Jiang, Y.H. Gao, H.X. Cao, The effect of stress distribution on dielectric properties of compositionally graded Ba_{1-x}Sr_xTiO₃ thin films, Physics Letters A 331 (2004) 117–124.
- [13] Y.C. Liang, Y.C. Liang, Nanoscale electrical and crystallographic properties of ultra-thin dielectric films, Thin Solid Films 518 (2010) S17–S21.
- [14] Y.C Liang, L.H. Chu, Effects of growth temperature on structure and electrical properties of dielectric (Ba,Sr)TiO₃ capacitors with transparent conducting oxide electrodes, Journal of Alloys and Compounds 509 (2011) 7948–7952.